Ejemplo n.º 1
0
    def cal_hidden_keras(self, test, layernum):
        if layernum == 0:
            acx = test
        else:
            acx = get_activations_single_layer(self.model, np.array(test),
                                               self.layerName(layernum - 1))

        units = int(
            int(self.model.layers[layernum].trainable_weights[0].shape[1]) / 4)

        if len(acx.shape) < len(test.shape):
            acx = np.array([acx])

        inp = keras.layers.Input(batch_shape=(None, acx.shape[1],
                                              acx.shape[2]),
                                 name="input")
        rnn, s, c = keras.layers.LSTM(units,
                                      return_sequences=True,
                                      stateful=False,
                                      return_state=True,
                                      name="RNN")(inp)
        states = keras.models.Model(inputs=[inp], outputs=[s, c, rnn])

        for layer in states.layers:
            if layer.name == "RNN":
                layer.set_weights(self.model.layers[layernum].get_weights())

        h_t_keras, c_t_keras, rnn = states.predict(acx)

        return rnn
Ejemplo n.º 2
0
 def displayInfo(self, test):
     model = self._code_repr_model
     print("method name: %s" % (test))
     conf = get_activations_single_layer(model, np.array([test]), self.layerName(-1))
     print("current confidence: %.2f\n" % (conf))
     if conf >= 0.5:
         return (1, conf)
     else:
         return (-1, 1 - conf)
Ejemplo n.º 3
0
 def displayInfo(self, test):
     model = self.model
     text = self.fromIDToText(test)
     print("review content: %s" % (text))
     conf = get_activations_single_layer(model, np.array([test]),
                                         self.layerName(-1))
     print("current confidence: %.2f\n" % (conf))
     if conf >= 0.5:
         return (1, conf)
     else:
         return (-1, 1 - conf)
Ejemplo n.º 4
0
    def cal_hidden_state(self, test, layernum):
        if layernum == 0:
            acx = test
        else:
            acx = get_activations_single_layer(self.model, np.array([test]),
                                               self.layerName(layernum - 1))

        units = int(
            int(self.model.layers[layernum].trainable_weights[0].shape[1]) / 4)
        # print("No units: ", units)

        # get weight
        W = self.model.layers[layernum].get_weights()[0]
        U = self.model.layers[layernum].get_weights()[1]
        b = self.model.layers[layernum].get_weights()[2]

        W_i = W[:, :units]
        W_f = W[:, units:units * 2]
        W_c = W[:, units * 2:units * 3]
        W_o = W[:, units * 3:]

        U_i = U[:, :units]
        U_f = U[:, units:units * 2]
        U_c = U[:, units * 2:units * 3]
        U_o = U[:, units * 3:]

        b_i = b[:units]
        b_f = b[units:units * 2]
        b_c = b[units * 2:units * 3]
        b_o = b[units * 3:]

        # calculate the hidden state value
        h_t = np.zeros((self.imagesize, units))
        c_t = np.zeros((self.imagesize, units))
        f_t = np.zeros((self.imagesize, units))
        h_t0 = np.zeros((1, units))
        c_t0 = np.zeros((1, units))

        for i in range(0, self.imagesize):
            f_gate = hard_sigmoid(
                np.dot(acx[i, :], W_f) + np.dot(h_t0, U_f) + b_f)
            i_gate = hard_sigmoid(
                np.dot(acx[i, :], W_i) + np.dot(h_t0, U_i) + b_i)
            o_gate = hard_sigmoid(
                np.dot(acx[i, :], W_o) + np.dot(h_t0, U_o) + b_o)
            new_C = np.tanh(np.dot(acx[i, :], W_c) + np.dot(h_t0, U_c) + b_c)
            c_t0 = f_gate * c_t0 + i_gate * new_C
            h_t0 = o_gate * np.tanh(c_t0)
            c_t[i, :] = c_t0
            h_t[i, :] = h_t0
            f_t[i, :] = f_gate

        return [h_t, c_t, f_t]
Ejemplo n.º 5
0
    def cal_hidden_state(self, x_mn, x_api, x_token):
        print(self.layerName(6))
        acx = get_activations_single_layer(self._code_repr_model, x_mn, x_api, x_token, self.layerName(2))
        units = int(int(self._code_repr_model.layers[6].trainable_weights[0].shape[1]) / 4)
        # print("No units: ", units)
        # lstm_layer = model.layers[1]
        W = self._code_repr_model.layers[6].get_weights()[0]
        U = self._code_repr_model.layers[6].get_weights()[1]
        b = self._code_repr_model.layers[6].get_weights()[2]

        W_i = W[:, :units]
        W_f = W[:, units: units * 2]
        W_c = W[:, units * 2: units * 3]
        W_o = W[:, units * 3:]

        U_i = U[:, :units]
        U_f = U[:, units: units * 2]
        U_c = U[:, units * 2: units * 3]
        U_o = U[:, units * 3:]

        b_i = b[:units]
        b_f = b[units: units * 2]
        b_c = b[units * 2: units * 3]
        b_o = b[units * 3:]

        # calculate the hidden state value
        h_t = np.zeros((6, units))
        c_t = np.zeros((6, units))
        f_t = np.zeros((6, units))
        h_t0 = np.zeros((1, units))
        c_t0 = np.zeros((1, units))

        for i in range(0, 6):
            f_gate = hard_sigmoid(np.dot(acx[i, :], W_f) + np.dot(h_t0, U_f) + b_f)
            i_gate = hard_sigmoid(np.dot(acx[i, :], W_i) + np.dot(h_t0, U_i) + b_i)
            o_gate = hard_sigmoid(np.dot(acx[i, :], W_o) + np.dot(h_t0, U_o) + b_o)
            new_C = np.tanh(np.dot(acx[i, :], W_c) + np.dot(h_t0, U_c) + b_c)
            c_t0 = f_gate * c_t0 + i_gate * new_C
            h_t0 = o_gate * np.tanh(c_t0)
            c_t[i, :] = c_t0
            h_t[i, :] = h_t0
            f_t[i, :] = f_gate

        return h_t, c_t, f_t
Ejemplo n.º 6
0
 def get_lstm_state(self, test):
     return get_activations_single_layer(self.lstm_state_model,
                                         np.array([test]), 'lstm_1')