Ejemplo n.º 1
0
def test_set_trainable_params():
    # set_trainable_params pattern mismatch
    with pytest.raises(KError):
        layer = Layer()
        layer.set_trainable_params('W', 1, 'b')

    # preserved name
    with pytest.raises(KError):
        d = Dense(1)
        d.set_trainable_params('trainable', 1)

    with pytest.raises(KError):
        layer = Layer()
        layer.set_trainable_params(1, 'W')
Ejemplo n.º 2
0
def test_check_input_shape():
    # Class inheriting Layer does not allow mutiple inputs
    with pytest.raises(KError):
        Sequential(Dense(1)([Input(1), Input(1)]))

    # Input dimension mismatch
    with pytest.raises(KError):
        input1 = Input((1, 1, 1))
        Dense(1)(input1)

    # Multiple inputs layer default accepts equal shape inputs
    with pytest.raises(KError):
        input1 = Input((1, 1, 1))
        Dense(1)(input1)
Ejemplo n.º 3
0
def tets_fit():
    # forget to compile
    inp1 = Input(1, batch_size=1)
    d1 = Dense(1)
    model = Model(inp1, d1)
    with pytest.raises(KError):
        model.fit([[1]], [[1]])
Ejemplo n.º 4
0
def test_fit_evaluate_predict_spec():
    x = np.array([[1], [1]])
    y = np.array([[1], [1]])

    input1 = Input(1, name='input1')
    input2 = Input(1, name='input2')
    output1 = Dense(1, name='output1')(input1)
    output2 = Dense(1, name='output2')(input2)

    model0 = Model(input1, output1)
    model1 = Model([input1, input2], [output1, output2])
    model2 = Model([input1, input2], [output1, output2])

    model0.compile('sgd', 'mse', metrics=['acc'])
    model1.compile('sgd', loss=['mse', 'mse'], metrics=['acc'])
    model2.compile('sgd',
                   loss={
                       'output1': 'mse',
                       'output2': 'mse'
                   },
                   metrics={
                       'output1': 'acc',
                       'output2': 'acc'
                   })

    model0.predict([1, 1])
    model0.evaluate([1, 1], [1, 1])
    model0.fit([1, 1], [1, 1], nb_epoch=1)

    model1.predict([x, x])
    model1.evaluate([x, x], [y, y])
    model1.fit([x, x], [y, y], nb_epoch=1)

    model2.predict({'input1': x, 'input2': x})
    model2.evaluate({'input1': x, 'input2': x}, {'output1': y, 'output2': y})
    model2.fit({
        'input1': x,
        'input2': x
    }, {
        'output1': y,
        'output2': y
    },
               nb_epoch=1)
Ejemplo n.º 5
0
def test_compile():
    inp1 = Input(1, batch_size=1)
    inp2 = Input(1, batch_size=2)
    d1 = Dense(1)
    d2 = Dense(1)

    def compile_model(inputs, outputs):
        model = Model(inputs, outputs)
        model.compile('sgd', 'mse')

    # input should be Input type
    with pytest.raises(KError):
        compile_model(d1, d2)

    with pytest.raises(KError):
        compile_model('whatever', d2)

    # input should be of Kensor type
    with pytest.raises(KError):
        compile_model(inp1, d2)

    # batch_size conflict
    with pytest.raises(KError):
        compile_model([inp1, inp2], d2)
Ejemplo n.º 6
0
def test_wrc_exceptions():
    # Sequential should be initialized with a list of layer
    with pytest.raises(KError):
        Sequential(Dense(2))

    # Layer weight shape mismatch
    with pytest.raises(KError):
        create_model(initial_weights={'W': np.expand_dims(W, axis=1), 'b': b})

    # regularizers does not take single input
    with pytest.raises(KError):
        create_model(initial_weights=[W, b], regularizers='l1')

    # constraints does not take single input
    with pytest.raises(KError):
        create_model(initial_weights=[W, b], constraints='maxnorm')
Ejemplo n.º 7
0
def test_sgd():
    ''' math:
    Let W = [A, B], b = [C, D], y = [E, F]
    MSE = 1/2*[(A+C-E)^2 + (B+D-F)^2]
    dA, dB, dC, dD = (A+C-E), (B+D-F), (A+C-E), (B+D-F)
    Assume E = 2*(A+C), F = 2*(B+D)
    dA, dB, dC, dD = -(A+C), -(B+D), -(A+C), -(B+D)
    A-=lr*dA, B-=lr*dB, C-=lr*dC, D-=lr*dD
    '''
    lr = 0.01
    W = np.array([[1, 2]])
    b = np.array([3, 4])
    wpb = W+b
    model = Sequential([Input(1), Dense(2, initial_weights=[W, b])])
    optimizer = SGD(lr=lr)
    model.compile(optimizer, 'mse')
    model.fit([1], 2*wpb, nb_epoch=1)
    expectedW = W+lr*wpb
    expectedb = (b+lr*wpb).reshape((2,))
    assert_allclose(B.eval(model.layers[1].W), expectedW)
    assert_allclose(B.eval(model.layers[1].b), expectedb)
Ejemplo n.º 8
0
def test_feed_exceptions():

    # Forget to feed d1
    with pytest.raises(KError):
        d1 = Dense(1)
        Dense(1)(d1)

    # Forget to feed d1
    with pytest.raises(KError):
        d1 = Dense(1)
        Dense(1)(d1)

    # First layer of sequential should be input
    with pytest.raises(KError):
        s1 = Sequential([Dense(1)])
        s1.compile('sgd', 'mse')

    # Recursive feeding
    with pytest.raises(KError):
        input1 = Input(1)
        d = Dense(1)
        d1 = d(input1)
        d(d1)

    # Recursive feeding
    with pytest.raises(KError):
        i1 = Input(1)
        i2 = Input(1)
        i3 = Input(1)
        i4 = Input(1)
        m = ElementWiseSum()
        m1 = m([i1, i2])
        m2 = m([i3, i4])
        m([m1, m2])  # m'th output feeds to m again

    # shape should be assigned as a tuple, i.e. Input((1,2))
    with pytest.raises(KError):
        input1 = Input(1, 2)

    # You should not feed an Input layer
    with pytest.raises(KError):
        input1 = Input(1)(Input(1))
Ejemplo n.º 9
0
model.add(Convolution2D(32, 3, 3, pad='same'))
model.add(Activation('relu'))
model.add(Convolution2D(32, 3, 3))
model.add(Activation('relu'))
model.add(Pooling1D('max', pool_size=(2, 2)))
model.add(Dropout(0.25))

model.add(Convolution2D(64, 3, 3, pad='same'))
model.add(Activation('relu'))
model.add(Convolution2D(64, 3, 3))
model.add(Activation('relu'))
model.add(Pooling1D('max', pool_size=(2, 2)))
model.add(Dropout(0.25))

model.add(Flatten())
model.add(Dense(512))
model.add(Activation('relu'))
model.add(Dropout(0.5))
model.add(Dense(num_classes))
model.add(Activation('softmax'))

# initiate RMSprop optimizer
opt = keraflow.optimizers.rmsprop(lr=0.0001, decay=1e-6)

# Let's train the model using RMSprop
model.compile(loss='categorical_crossentropy',
              optimizer=opt,
              metrics=['accuracy'])

x_train = x_train.astype('float32')
x_test = x_test.astype('float32')
Ejemplo n.º 10
0
def test_get_tensor_shape():
    # should contain _keraflow_shape
    with pytest.raises(KError):
        d = Dense(1)
        d.get_tensor_shape(d)
Ejemplo n.º 11
0
# convert class vectors to binary class matrices
Y_train = np_utils.to_categorical(y_train, nb_classes)
Y_test = np_utils.to_categorical(y_test, nb_classes)

model = Sequential()

model.add(Input((1, img_rows, img_cols)))
model.add(Convolution2D(nb_kernel, kernel_size[0], kernel_size[1],
                        pad='valid'))
model.add(Activation('relu'))
model.add(Convolution2D(nb_kernel, kernel_size[0], kernel_size[1]))
model.add(Activation('relu'))
model.add(Pooling2D('max', pool_size=(nb_pool, nb_pool)))
model.add(Dropout(0.25))

model.add(Flatten())
model.add(Dense(128))
model.add(Activation('relu'))
model.add(Dropout(0.5))
model.add(Dense(nb_classes))
model.add(Activation('softmax'))

model.compile(loss='categorical_crossentropy',
              optimizer='adadelta',
              metrics=['accuracy'])

model.fit(X_train, Y_train, batch_size=batch_size, nb_epoch=nb_epoch, validation_data=(X_test, Y_test))
score = model.evaluate(X_test, Y_test)
print('Test score:', score[0])
print('Test accuracy:', score[1])
Ejemplo n.º 12
0
def create_model(**kwargs):
    model = Sequential([Input(1), Dense(2, **kwargs)])
    model.compile('sgd', 'mse')
    return model
Ejemplo n.º 13
0
print('Loading data...')
(X_train, y_train), (X_test, y_test) = imdb.load_data(nb_words=max_features)
print(len(X_train), 'train sequences')
print(len(X_test), 'test sequences')

print('Pad sequences (samples x time)')
X_train = pad_sequences(X_train, maxlen=maxlen)
X_test = pad_sequences(X_test, maxlen=maxlen)
print('X_train shape:', X_train.shape)
print('X_test shape:', X_test.shape)

print('Build model...')
model = Sequential()
model.add(Input(None, dtype='int32'))
model.add(Embedding(max_features, 128))
model.add(LSTM(128, dropout_W=0.2, dropout_U=0.2))  # try using a GRU instead, for fun
model.add(Dense(1))
model.add(Activation('sigmoid'))

# try using different optimizers and different optimizer configs
model.compile(loss='binary_crossentropy',
              optimizer='adam',
              metrics=['accuracy'])

print('Train...')
model.fit(X_train, y_train, batch_size=batch_size, nb_epoch=15,
          validation_data=(X_test, y_test))
score, acc = model.evaluate(X_test, y_test, batch_size=batch_size)
print('Test score:', score)
print('Test accuracy:', acc)
Ejemplo n.º 14
0
X_train = X_train.reshape(60000, 784)
X_test = X_test.reshape(10000, 784)
X_train = X_train.astype('float32')
X_test = X_test.astype('float32')
X_train /= 255
X_test /= 255
print(X_train.shape[0], 'train samples')
print(X_test.shape[0], 'test samples')

# convert class vectors to binary class matrices
y_train = np_utils.to_categorical(y_train, nb_classes)
y_test = np_utils.to_categorical(y_test, nb_classes)

model = Sequential()
model.add(Input(784))
model.add(Dense(512))
model.add(Activation('relu'))
model.add(Dropout(0.2))
model.add(Dense(512))
model.add(Activation('relu'))
model.add(Dropout(0.2))
model.add(Dense(10))
model.add(Activation('softmax'))

model.compile(loss='categorical_crossentropy',
              optimizer='rmsprop',
              metrics=['accuracy'])

history = model.fit(X_train, y_train,
                    batch_size=batch_size, nb_epoch=nb_epoch,
                    verbose=1, validation_data=(X_test, y_test))
Ejemplo n.º 15
0
# word group filters of size kernel_row:
model.add(
    Convolution1D(nb_kernel=nb_kernel,
                  kernel_row=kernel_row,
                  pad='valid',
                  activation='relu',
                  stride=1))
# we use max pooling:
model.add(Pooling1D('max', pool_length=maxlen - 2))

# We flatten the output of the conv layer,
# so that we can add a vanilla dense layer:
model.add(Flatten())

# We add a vanilla hidden layer:
model.add(Dense(hidden_dims))
model.add(Dropout(0.2))
model.add(Activation('relu'))

# We project onto a single unit output layer, and squash it with a sigmoid:
model.add(Dense(1))
model.add(Activation('sigmoid'))

model.compile(loss='binary_crossentropy',
              optimizer='adam',
              metrics=['accuracy'])
model.fit(X_train,
          y_train,
          batch_size=batch_size,
          nb_epoch=nb_epoch,
          validation_data=(X_test, y_test))
Ejemplo n.º 16
0
def dense(**kwargs):
    return Dense(output_dim, **kwargs)
Ejemplo n.º 17
0
y_train = np_utils.to_categorical(y_train, nb_classes)
y_test = np_utils.to_categorical(y_test, nb_classes)

row, col, pixel = X_train.shape[1:]

# 4D input.
x = Input(shape=(row, col, pixel))

# Encodes a row of pixels using TimeDistributed Wrapper.
encoded_rows = TimeDistributed(LSTM(output_dim=row_hidden))(x)

# Encodes columns of encoded rows.
encoded_columns = LSTM(col_hidden)(encoded_rows)

# Final predictions and model.
prediction = Dense(nb_classes, activation='softmax')(encoded_columns)
model = Model(inputs=x, outputs=prediction)
model.compile(loss='categorical_crossentropy',
              optimizer='rmsprop',
              metrics=['accuracy'])

# Training.
model.fit(X_train,
          y_train,
          batch_size=batch_size,
          nb_epoch=nb_epochs,
          verbose=1,
          validation_data=(X_test, y_test))

# Evaluation.
scores = model.evaluate(X_test, y_test)