Ejemplo n.º 1
0
def train(x_target, x_ref, y_ref, epoch_num):

    # VGG16読み込み, S network用
    print("Model build...")
    #mobile = VGG16(include_top=False, input_shape=input_shape, weights='imagenet')

    # mobile net読み込み, S network用
    mobile = MobileNetV2(include_top=True, input_shape=input_shape, alpha=alpha,
                         , weights='imagenet')

    #最終層削除
    mobile.layers.pop()

    # 重みを固定
    for layer in mobile.layers:
        if layer.name == "block_13_expand": # "block5_conv1": for VGG16
            break
        else:
            layer.trainable = False

    model_t = Model(inputs=mobile.input,outputs=mobile.layers[-1].output)

    # R network用 Sと重み共有
    model_r = Network(inputs=model_t.input,
                      outputs=model_t.output,
                      name="shared_layer")

    #Rに全結合層を付ける
    prediction = Dense(classes, activation='softmax')(model_t.output)
    model_r = Model(inputs=model_r.input,outputs=prediction)

    #コンパイル
    optimizer = SGD(lr=5e-5, decay=0.00005)
    model_r.compile(optimizer=optimizer, loss="categorical_crossentropy")
    model_t.compile(optimizer=optimizer, loss=original_loss)

    model_t.summary()
    model_r.summary()

    print("x_target is",x_target.shape[0],'samples')
    print("x_ref is",x_ref.shape[0],'samples')

    ref_samples = np.arange(x_ref.shape[0])
    loss, loss_c = [], []

    print("training...")

    #学習
    for epochnumber in range(epoch_num):
        x_r, y_r, lc, ld = [], [], [], []

        #ターゲットデータシャッフル
        np.random.shuffle(x_target)

        #リファレンスデータシャッフル
        np.random.shuffle(ref_samples)
        for i in range(len(x_target)):
            x_r.append(x_ref[ref_samples[i]])
            y_r.append(y_ref[ref_samples[i]])
        x_r = np.array(x_r)
        y_r = np.array(y_r)

        for i in range(int(len(x_target) / batchsize)):

            #batchsize分のデータロード
            batch_target = x_target[i*batchsize:i*batchsize+batchsize]
            batch_ref = x_r[i*batchsize:i*batchsize+batchsize]
            batch_y = y_r[i*batchsize:i*batchsize+batchsize]

            #target data
            #学習しながら、損失を取得
            lc.append(model_t.train_on_batch(batch_target, np.zeros((batchsize, feature_out))))

            #reference data
            #学習しながら、損失を取得
            ld.append(model_r.train_on_batch(batch_ref, batch_y))

        loss.append(np.mean(ld))
        loss_c.append(np.mean(lc))

        if (epochnumber+1) % 5 == 0:
            print("epoch:",epochnumber+1)
            print("Descriptive loss:", loss[-1])
            print("Compact loss", loss_c[-1])

    #結果グラフ
    plt.plot(loss,label="Descriptive loss")
    plt.xlabel("epoch")
    plt.legend()
    plt.show()

    plt.plot(loss_c,label="Compact loss")
    plt.xlabel("epoch")
    plt.legend()
    plt.show()    

    return model_t
Ejemplo n.º 2
0
def train(x_target, x_ref, y_ref, epoch_num):

    #Read VGG16, S network
    print("Model build...")
    #mobile = VGG16(include_top=False, input_shape=input_shape, weights='imagenet')

    #Read mobile net, S network
    mobile = MobileNetV2(include_top=False,
                         input_shape=input_shape,
                         alpha=alpha,
                         depth_multiplier=1,
                         weights='imagenet')

    #Delete last layer
    mobile.layers.pop()

    #Fixed weight
    for layer in mobile.layers:
        if layer.name == "block_13_expand":  # "block5_conv1": for VGG16
            break
        else:
            layer.trainable = False

    model_t = Model(inputs=mobile.input, outputs=mobile.layers[-1].output)

    #R network S and Weight sharing
    model_r = Network(inputs=model_t.input,
                      outputs=model_t.output,
                      name="shared_layer")

    #Apply a Fully Connected Layer to R
    prediction = Dense(classes, activation='softmax')(model_t.output)
    model_r = Model(inputs=model_r.input, outputs=prediction)

    #Compile
    optimizer = SGD(lr=5e-5, decay=0.00005)
    model_r.compile(optimizer=optimizer, loss="categorical_crossentropy")
    model_t.compile(optimizer=optimizer, loss=original_loss)

    model_t.summary()
    model_r.summary()

    print("x_target is", x_target.shape[0], 'samples')
    print("x_ref is", x_ref.shape[0], 'samples')

    ref_samples = np.arange(x_ref.shape[0])
    loss, loss_c = [], []

    print("training...")

    #Learning
    for epochnumber in range(epoch_num):
        x_r, y_r, lc, ld = [], [], [], []

        #Shuffle target data
        np.random.shuffle(x_target)

        #Shuffle reference data
        np.random.shuffle(ref_samples)
        for i in range(len(x_target)):
            x_r.append(x_ref[ref_samples[i]])
            y_r.append(y_ref[ref_samples[i]])
        x_r = np.array(x_r)
        y_r = np.array(y_r)

        for i in range(int(len(x_target) / batchsize)):

            #Load data for batch size
            batch_target = x_target[i * batchsize:i * batchsize + batchsize]
            batch_ref = x_r[i * batchsize:i * batchsize + batchsize]
            batch_y = y_r[i * batchsize:i * batchsize + batchsize]

            #target data
            #Get loss while learning
            lc.append(
                model_t.train_on_batch(batch_target,
                                       np.zeros((batchsize, feature_out))))

            #reference data
            #Get loss while learning
            ld.append(model_r.train_on_batch(batch_ref, batch_y))

        loss.append(np.mean(ld))
        loss_c.append(np.mean(lc))

        if (epochnumber + 1) % 5 == 0:
            print("epoch:", epochnumber + 1)
            print("Descriptive loss:", loss[-1])
            print("Compact loss", loss_c[-1])

    #Result graph
    plt.plot(loss, label="Descriptive loss")
    plt.xlabel("epoch")
    plt.legend()
    plt.show()

    plt.plot(loss_c, label="Compact loss")
    plt.xlabel("epoch")
    plt.legend()
    plt.show()

    return model_t
Ejemplo n.º 3
0
def train(s_data, s_out, nuc, bestwight, samplesize, epoch_num):

    batch_size = 1024
    num_classes_org = 1024
    num_classes = 63
    shape1 = (None, DATA_LENGTH, 2)

    model = cnn_network_keras.build_network(shape=shape1,
                                            num_classes=num_classes_org)
    model.load_weights(bestwight)
    model.layers.pop()  # remove last layer
    model.layers.pop()  # remove last layer
    model.layers.pop()  # remove last layer

    for layer in model.layers:
        if layer.name == "conv1d_20":
            break
        else:
            layer.trainable = False

    flat = GlobalAveragePooling1D()(model.layers[-1].output)
    model_t = Model(inputs=model.input, outputs=flat)
    model_r = Network(inputs=model_t.input,
                      outputs=model_t.output,
                      name="shared_layer")

    prediction = Dense(num_classes, activation='softmax')(model_t.output)
    model_r = Model(inputs=model_r.input, outputs=prediction)

    optimizer = SGD(lr=5e-5, decay=0.00005)
    model_r.compile(optimizer=optimizer, loss="categorical_crossentropy")
    model_t.compile(optimizer=optimizer, loss=original_loss)

    x_ref, test_x_r, y_ref, test_y_r, num_classes_r = prepDataNear(
        s_data, samplesize, nuc)
    x_target, test_x, train_y, test_y, num_classes = prepData(
        s_data, samplesize, nuc)

    ref_samples = np.arange(x_ref.shape[0])

    loss, loss_c = [], []
    epochs = []
    print("training...")

    for epochnumber in range(epoch_num):
        x_r, y_r, lc, ld = [], [], [], []

        np.random.shuffle(x_target)
        np.random.shuffle(ref_samples)

        for i in range(len(x_target)):
            x_r.append(x_ref[ref_samples[i]])
            y_r.append(y_ref[ref_samples[i]])
        x_r = np.array(x_r)
        y_r = np.array(y_r)

        for i in range(int(len(x_target) / batchsize)):
            batch_target = x_target[i * batchsize:i * batchsize + batchsize]
            batch_ref = x_r[i * batchsize:i * batchsize + batchsize]
            batch_y = y_r[i * batchsize:i * batchsize + batchsize]
            # target data
            lc.append(
                model_t.train_on_batch(batch_target,
                                       np.zeros((batchsize, feature_out))))

            # reference data
            ld.append(model_r.train_on_batch(batch_ref, batch_y))

        loss.append(np.mean(ld))
        loss_c.append(np.mean(lc))
        epochs.append(epochnumber)

        print("epoch : {} ,Descriptive loss : {}, Compact loss : {}".format(
            epochnumber + 1, loss[-1], loss_c[-1]))
        if epochnumber % 1 == 0:
            model_t.save_weights(s_out + '/' + nuc +
                                 '/model_t_ep_{}.h5'.format(epochnumber))
            model_r.save_weights(s_out + '/' + nuc +
                                 '/model_r_ep_{}.h5'.format(epochnumber))
Ejemplo n.º 4
0
def train(x_target, x_ref, y_ref, epoch_num):

    print("Model build...")
    # mobile = VGG16(include_top=False, input_shape=input_shape, weights='imagenet', pooling= 'avg')
    mobile = InceptionResNetV2(include_top=False,
                               input_shape=input_shape,
                               weights='imagenet')
    # mobile = MobileNetV2(include_top=True, input_shape=input_shape, alpha=alpha,
    #                  weights='imagenet')

    mobile.layers.pop()
    '''
    Last layer :
    - block_13_expand : Mobilenet v2
    - block5_conv1  : VGG16
    - mixed_7a : Inception resnetv2
    '''
    # for layer in mobile.layers:
    # print(layer.name)
    # if layer.name == "block_13_expand": # "block5_conv1": for VGG16
    # if layer.name == "block5_conv1":
    # if layer.name == "mixed_7a":
    #     break
    # else:
    #     layer.trainable = False
    # exit()

    flat = GlobalAveragePooling2D()(mobile.layers[-1].output)
    model_t = Model(inputs=mobile.input, outputs=flat)

    model_r = Network(inputs=model_t.input,
                      outputs=model_t.output,
                      name="shared_layer")

    prediction = Dense(classes, activation='softmax')(model_t.output)
    model_r = Model(inputs=model_r.input, outputs=prediction)

    optimizer = SGD(lr=5e-5, decay=0.00005)
    model_r.compile(optimizer=optimizer, loss="categorical_crossentropy")
    model_t.compile(optimizer=optimizer, loss=original_loss)

    model_t.summary()

    ref_samples = np.arange(x_ref.shape[0])
    loss, loss_c = [], []
    epochs = []
    print("training...")

    for epochnumber in range(epoch_num):
        x_r, y_r, lc, ld = [], [], [], []

        np.random.shuffle(x_target)

        np.random.shuffle(ref_samples)
        for i in range(len(x_target)):
            x_r.append(x_ref[ref_samples[i]])
            y_r.append(y_ref[ref_samples[i]])
        x_r = np.array(x_r)
        y_r = np.array(y_r)

        for i in range(int(len(x_target) / batchsize)):
            batch_target = x_target[i * batchsize:i * batchsize + batchsize]
            batch_ref = x_r[i * batchsize:i * batchsize + batchsize]
            batch_y = y_r[i * batchsize:i * batchsize + batchsize]
            #target data
            lc.append(
                model_t.train_on_batch(batch_target,
                                       np.zeros((batchsize, feature_out))))

            #reference data
            ld.append(model_r.train_on_batch(batch_ref, batch_y))

        loss.append(np.mean(ld))
        loss_c.append(np.mean(lc))
        epochs.append(epochnumber)

        print("epoch : {} ,Descriptive loss : {}, Compact loss : {}".format(
            epochnumber + 1, loss[-1], loss_c[-1]))
        if epochnumber % 10 == 0:
            model_t.save_weights('model/model_t_smd_{}.h5'.format(epochnumber))
            model_r.save_weights('model/model_r_smd_{}.h5'.format(epochnumber))
Ejemplo n.º 5
0
def train_test(result_df, df_t, df_r, df_test):

    # data

    x_target = np.array(df_t.vecs.to_list())
    x_ref = np.array(df_r.vecs.to_list())
    y_ref = np.array(df_r.target.to_list())
    y_ref = to_categorical(y_ref)
    test_vecs = np.array(df_test.vecs.to_list())

    n_sup = 10000
    n_per_targ = 1000
    df_r_temp = df_r.groupby('target', group_keys=False).apply(
        lambda df: df.sample(n=min(df.shape[0], n_per_targ), random_state=42))

    x_tr = np.array(df_t.head(n_sup).append(df_r_temp).vecs.to_list())
    y_tr = np.array(df_t.head(n_sup).append(df_r_temp).label.to_list())

    #y_tr = to_categorical(y_tr)

    #print(f"{df.where(df.label == 0).dropna().target.value_counts()}")

    #print(f"x_target: {x_target.shape}\nx_ref: {x_ref.shape}\ny_ref: {y_ref.shape}\n")

    res_path = "/home/philipp/projects/dad4td/reports/one_class/all.tsv"
    classes = df_r.target.unique().shape[0]
    print(f"classes: {classes}")
    batchsize = 128
    epoch_num = 15
    epoch_report = 5
    feature_out = 64
    pred_mode = "nn"

    # get the loss for compactness
    original_loss = create_loss(classes, batchsize)

    # model creation
    model = create_model(loss="binary_crossentropy", n_in=x_target[0].shape[0])

    model_t = Model(inputs=model.input, outputs=model.output)

    model_r = Network(inputs=model_t.input,
                      outputs=model_t.output,
                      name="shared_layer")

    prediction = Dense(classes, activation='softmax')(model_t.output)
    model_r = Model(inputs=model_r.input, outputs=prediction)

    #latent_t = Dense(2, activation='relu')(model_t.output)
    #model_t = Model(inputs=model_t.input,outputs=latent_t)
    prediction_t = Dense(feature_out, activation='softmax')(model_t.output)
    model_t = Model(inputs=model_t.input, outputs=prediction_t)

    #optimizer = SGD(lr=5e-5, decay=0.00005)
    optimizer = Adam(learning_rate=5e-5)

    model_r.compile(optimizer=optimizer, loss="categorical_crossentropy")
    model_t.compile(optimizer=optimizer, loss=original_loss)

    model_t.summary()
    model_r.summary()

    ref_samples = np.arange(x_ref.shape[0])
    loss, loss_c = [], []
    epochs = []
    best_acc = 0
    print("training...")

    for epochnumber in range(epoch_num):
        x_r, y_r, lc, ld = [], [], [], []

        np.random.shuffle(x_target)

        np.random.shuffle(ref_samples)
        for i in range(len(x_ref)):
            x_r.append(x_ref[ref_samples[i]])
            y_r.append(y_ref[ref_samples[i]])
        x_r = np.array(x_r)
        y_r = np.array(y_r)

        for i in range(int(len(x_target) / batchsize)):
            batch_target = x_target[i * batchsize:i * batchsize + batchsize]
            batch_ref = x_r[i * batchsize:i * batchsize + batchsize]
            batch_y = y_r[i * batchsize:i * batchsize + batchsize]
            # target data
            lc.append(
                model_t.train_on_batch(batch_target,
                                       np.zeros((batchsize, feature_out))))

            # reference data
            ld.append(model_r.train_on_batch(batch_ref, batch_y))

        loss.append(np.mean(ld))
        loss_c.append(np.mean(lc))
        epochs.append(epochnumber)

        if epochnumber % epoch_report == 0 or epochnumber == epoch_num - 1:
            print(
                f"-----\n\nepoch : {epochnumber+1} ,Descriptive loss : {loss[-1]}, Compact loss : {loss_c[-1]}"
            )

            model_t.save_weights(
                '/home/philipp/projects/dad4td/models/one_class/model_t_smd_{}.h5'
                .format(epochnumber))
            model_r.save_weights(
                '/home/philipp/projects/dad4td/models/one_class/model_r_smd_{}.h5'
                .format(epochnumber))
            #test_b = model_t.predict(test_vecs)

            #od = OCSVM()
            # od.fit(test_b)

            #decision_scores = od.labels_

            # decision_scores = decision_scores.astype(float)

            labels = df_test["label"].astype(int).values

            # threshold = 0.5
            # scores = get_scores(dict(),labels, np.where(decision_scores > threshold, 0, 1), outlabel=0)
            if pred_mode == "svm":
                x_tr_pred = model_t.predict(x_tr)
                clf = SVC()
                clf.fit(x_tr_pred, y_tr)

                preds = model_t.predict(test_vecs)
                preds = clf.predict(preds)
            elif pred_mode == "nn":
                y_tr = y_tr.astype(int)
                print(y_tr)
                x_tr_pred = model_t.predict(x_tr)
                clf = create_sup_model(n_in=feature_out)
                clf.summary()
                clf.fit(x_tr_pred,
                        y=y_tr,
                        epochs=15,
                        batch_size=64,
                        verbose=True)

                decision_scores = model_t.predict(test_vecs)
                decision_scores = clf.predict(decision_scores)
                preds = decision_scores.astype(float)

                _ = plt.hist(preds, bins=10)
                plt.show()

            else:
                raise Exception(f"{pred_mode} must be one of svm, nn, osvm")

            scores = get_scores(dict(), labels, preds, outlabel=0)
            print(f"\n\nTest scores:\n{pd.DataFrame([scores], index=[0])}")
            if scores["accuracy"] > best_acc:
                best_acc = scores["accuracy"]
                print(f"best_acc updated to: {best_acc}")
            normalize = "true"
            print(f"{confusion_matrix(labels, preds, normalize=normalize)}")
    result_df = result_df.append(dict(cclass=list(df_test.target.unique()),
                                      accuracy=best_acc),
                                 ignore_index=True)
    result_df.to_csv(res_path, sep="\t")
    return result_df