def save_model(model: Sequential, model_name: str, model_num: str):
    '''Save the current passed in model as model_name.

    Parameters
    ----------
    model: Sequential
        Keras model.

    model_name: str
        The name of the model.
    '''

    model_json = model.to_json()
    with open("models/" + model_name + '-' + str(model_num) + ".json",
              "w") as json_file:
        json_file.write(model_json)

    model.save_weights("models/" + model_name + '-' + str(model_num) + ".h5")
    print("Saved %s to disk" % (model_name + '-' + str(model_num)))
Ejemplo n.º 2
0
# truncate and pad the input sequences so that they are all in the same length for modeling
X = tokenizer.texts_to_sequences(df['Consumer complaint narrative'].values)
X = pad_sequences(X, maxlen=MAX_SEQUENCE_LENGTH)
print('Shape of data tensor:', X.shape)

# Converting categorical labels to numbers
Y = pd.get_dummies(df['Product']).values
print('Shape of label tensor:', Y.shape)

# Train test split
X_train, X_test, Y_train, Y_test = train_test_split(X, Y, test_size=0.10, random_state=42)
print(X_train.shape, Y_train.shape)
print(X_test.shape, Y_test.shape)

model = Sequential()
model.add(Embedding(MAX_NB_WORDS, EMBEDDING_DIM, input_length=X.shape[1]))
model.add(SpatialDropout1D(0.2))
model.add(LSTM(100, dropout=0.2, recurrent_dropout=0.2))
model.add(Dense(13, activation='softmax'))
model.compile(loss='categorical_crossentropy', optimizer='adam', metrics=['accuracy'])

epochs = 5
batch_size = 64

history = model.fit(X_train, Y_train, epochs=epochs, batch_size=batch_size, validation_split=0.1,
                    callbacks=[EarlyStopping(monitor='val_loss', patience=3, min_delta=0.0001)])

# get accuracy score
accr = model.evaluate(X_test, Y_test)
print('Test set\n  Loss: {:0.3f}\n  Accuracy: {:0.3f}'.format(accr[0], accr[1]))
Ejemplo n.º 3
0
def run2():
    #Building a Deep Neural Network based classification model
    model = Sequential()
    model.add(
        Dense(164,
              input_shape=[14],
              activation='relu',
              kernel_regularizer='l2',
              kernel_initializer='TruncatedNormal'))
    model.add(Dense(164, activation='relu'))
    model.add(Dense(546 * 2, activation='relu'))
    model.add(BatchNormalization())
    model.add(Dropout(0.5))
    model.add(Dense(14, activation='relu', kernel_regularizer='l2'))
    model.add(BatchNormalization())
    model.add(Dense(2, activation='sigmoid'))
    #Save a copy of the untrained model
    model.save(
        '../Custom_Models/Keras_Model_H5/Untrained_Classification_Model.h5')
    print("Model is saved to '/Untrained_Classification_Model.h5'")
    import tensorflow
    model = tensorflow.keras.models.load_model(
        '../Custom_Models/Keras_Model_H5/Untrained_Classification_Model.h5')
    return model
Ejemplo n.º 4
0
 def top_model():
     top_model = Sequential()
     top_model.add(
         Conv2D(64, (3, 3),
                activation='relu',
                padding='same',
                input_shape=conv_base.output_shape[1:]))
     top_model.add(BatchNormalization())
     top_model.add(MaxPool2D(pool_size=(2, 2), strides=(1, 1)))
     top_model.add(Flatten())
     top_model.add(Dense(4096, activation='relu'))
     top_model.add(BatchNormalization())
     top_model.add(Dropout(0.5))
     top_model.add(Dense(
         14 // ns, activation='relu'))  #for ns =2 it will be 14//2 == 7
     # Creating a final model based on VGG16 and additional architecture
     model = Sequential()
     for layer in conv_base.layers:
         model.add(layer)
     model.add(top_model)
     return model
Ejemplo n.º 5
0
def fit(image_dir: str = IMAGE_DIR, dump: bool = True, **kwargs):
    """ Read and resize images
    Save all the data in:
        TRAIN_X - pixels
        TRAIN_Y - labels
    """
    logdir = "logs/scalars/" + datetime.now().strftime("%Y%m%d-%H%M%S")
    tensorboard_callback = TensorBoard(log_dir=logdir)

    model_checkpoint = ModelCheckpoint(
        str(MODELS_DIR /
            'weights-improvement-{epoch:02d}-{val_accuracy:.2f}.hdf5'),
        monitor='val_loss',
        verbose=0,
        save_best_only=False,
        save_weights_only=False,
        mode='auto',
        period=1)

    reduce_lron = ReduceLROnPlateau(monitor='val_loss',
                                    factor=0.1,
                                    patience=3,
                                    verbose=1,
                                    mode='auto')

    base_model = InceptionV3(include_top=False,
                             weights='imagenet',
                             input_shape=(WIDHT, HEIGHT, 3))
    for layer in base_model.layers:
        layer.trainable = False

    model = Sequential()
    model.add(base_model)
    model.add(GlobalAveragePooling2D())
    model.add(Dense(1024, activation='relu', kernel_regularizer=l2(0.0001)))
    model.add(Dense(LABEL_SIZE, activation='softmax'))
    model.compile(
        loss='categorical_crossentropy',
        optimizer='rmsprop',
        metrics=['accuracy'],
    )

    train_generator = augs_gen.flow_from_directory(
        directory=IMAGE_DIR,
        target_size=WH,
        batch_size=BATCH_SIZE,
        seed=1,
        shuffle=True,
        subset='training',
    )
    test_generator = augs_gen.flow_from_directory(
        directory=IMAGE_DIR,
        target_size=WH,
        batch_size=BATCH_SIZE,
        seed=1,
        shuffle=True,
        subset='validation',
    )
    labels = (train_generator.class_indices)
    labels = dict((v, k) for k, v in labels.items())

    with open(DATA_DIR / 'generator_labels.dump', 'wb') as file:
        pickle.dump(labels, file)

    with graph.as_default():
        model.fit_generator(
            train_generator,
            validation_data=test_generator,
            steps_per_epoch=train_generator.samples // BATCH_SIZE,
            validation_steps=test_generator.samples // BATCH_SIZE,
            epochs=EPOCHS,
            verbose=1,
            callbacks=[tensorboard_callback, model_checkpoint, reduce_lron],
        )
    print('Prepare to write data on the disk')

    model.save(f'{model_name}.dump')
Ejemplo n.º 6
0
def build_model(vocab_size, window=3):
    model = Sequential()
    model.add(Embedding(vocab_size, EMBEDDING_N_DIM, input_length=window))
    model.add(Dropout(0.1))
    model.add(LSTM(256, dropout=0.1, recurrent_dropout=0.1))
    model.add(Dense(1024, activation='relu'))
    model.add(Dropout(0.3))
    model.add(Dense(vocab_size, activation='softmax'))
    model.compile(
        loss='categorical_crossentropy',
        optimizer='adam',
        metrics=[
            'accuracy',
        ],
    )
    return model
def read_dataset(image_dir: str = IMAGE_DIR, dump: bool = True, **kwargs):
    """ Read and resize images
    Save all the data in:
        TRAIN_X - pixels
        TRAIN_Y - labels
    """
    logdir = "logs/scalars/" + datetime.now().strftime("%Y%m%d-%H%M%S")
    tensorboard_callback = TensorBoard(log_dir=logdir)

    base_model = InceptionV3(include_top=False,
                             weights='imagenet',
                             input_shape=(WIDHT, HEIGHT, 3))
    for layer in base_model.layers:
        layer.trainable = False

    model = Sequential()
    model.add(base_model)
    model.add(GlobalAveragePooling2D())
    model.add(Dense(1024, activation='relu'))
    model.add(Dense(LABEL_SIZE, activation='softmax'))
    model.compile(
        loss='categorical_crossentropy',
        optimizer='rmsprop',
        metrics=['accuracy'],
    )

    #  def define_label(parent_name):
    #      return "-".join(parent_name.split('-')[1:])

    #  count = 0
    #  for subdir, dirs, files in os.walk(image_dir):
    #      print(f'PATH: {subdir} is processing')
    #      count += 1
    #      for file in files:
    #          path = pathlib.Path(subdir).absolute() / file
    #          image = load_img(str(path), target_size=WH)
    #          TRAIN_X.append(np.array(image))

    #          image_label = define_label(path.parent.name)
    #          TRAIN_Y.append(image_label)

    #  label_encoder = LabelEncoder()
    #  TRAIN_Y = label_encoder.fit_transform(TRAIN_Y)
    #  TRAIN_Y = np.array(to_categorical(TRAIN_Y, num_classes=LABEL_SIZE))

    #  x_train, x_test, y_train, y_test = train_test_split(
    #      np.array(TRAIN_X),
    #      TRAIN_Y,
    #      test_size=0.2,
    #      random_state=69,
    #  )

    train_generator = augs_gen.flow_from_directory(
        directory=IMAGE_DIR,
        target_size=WH,
        batch_size=BATCH_SIZE,
        seed=1,
        shuffle=True,
        subset='training',
    )
    test_generator = augs_gen.flow_from_directory(
        directory=IMAGE_DIR,
        target_size=WH,
        batch_size=BATCH_SIZE,
        seed=1,
        shuffle=True,
        subset='validation',
    )

    labels = (train_generator.class_indices)
    labels = dict((v, k) for k, v in labels.items())

    with open(DATA_DIR / 'generator_labels.dump', 'wb') as file:
        pickle.dump(labels, file)

    model.fit_generator(
        train_generator,
        validation_data=test_generator,
        steps_per_epoch=train_generator.samples // BATCH_SIZE,
        validation_steps=test_generator.samples // BATCH_SIZE,
        epochs=EPOCHS,
        verbose=1,
        callbacks=[tensorboard_callback],
    )
    print('Prepare to write data on the disk')

    model.save(f'{model_name}_without_iter.dump')
Ejemplo n.º 8
0
def create_network():
    #open up the dataset for reading and training
    x = pickle.load(open("x.pickle", "rb"))
    y = pickle.load(open("y.pickle", "rb"))

    #noramlize the data to a fixed pixel size
    x = x / 255.0

    #start  building the model
    model = Sequential()

    #create Convolutional layers (filters)
    model.add(Conv2D(32, (3, 3), input_shape=x.shape[1:]))
    model.add(Activation("relu"))
    model.add(MaxPooling2D(pool_size=(2, 2)))

    model.add(Conv2D(64, (3, 3)))
    model.add(Activation("relu"))
    model.add(MaxPooling2D(pool_size=(2, 2)))

    model.add(Conv2D(64, (3, 3)))
    model.add(Activation("relu"))
    model.add(MaxPooling2D(pool_size=(2, 2)))
    model.add(Dropout(0.25))

    #these layers are hidden
    model.add(Flatten())
    model.add(Dense(128))
    model.add(Activation("relu"))

    model.add(Dense(128))
    model.add(Activation("relu"))

    # the final layer needs to have the same amount of neurons as our categories
    model.add(Dense(len(categories)))
    model.add(Activation("softmax"))

    #copmile the model
    model.compile(loss="sparse_categorical_crossentropy",
                  optimizer="adam",
                  metrics=["accuracy"])

    #training the model with 10 iterations (epochs)
    history = model.fit(x, y, batch_size=32, epochs=25, validation_split=0.1)

    #save the model
    model.save_weights("model.h5")
    print("Saved model to disk")
    model.save('CNN.model')
    return
#преобразуем двумерные изображения в одномерные данные для входа в нейросеть
x_train = x_train.reshape(
    60000,
    784)  #60000 изображений, 784 пикселя в каждом - получаем двумерный массив
x_test = x_test.reshape(10000, 784)  #для тестирования 10000 изображений
#нормализуем
x_train = x_train / 255  #делим интенсивность каждого пикселя на 255, то есть теперь эти данные в диапозоне от 0 до 1
x_test = x_test / 255
#правильные ответы - номер соответствующего класса от 0 до 10, нейросеть выдает 10 значений по количеству нейронов, которые соответствуют вероятности того, что объект принадлежит данному классу
y_train = utils.to_categorical(
    y_train,
    10)  #преобразуем метки выхода в категории, пример ниже (10 классов)
y_test = utils.to_categorical(y_test, 10)

#теперь создаем саму нейросеть(модель)
model = Sequential()

#добавляем слои(2 слоя, входной на 800 и выходной на 10 нейронов)
model.add(
    Dense(800, input_dim=784, activation="relu")
)  #800 - количество нейронов, input_dim - количество входов в каждый нейрон(по количеству пикселей в изображении), activation - функция активации, в данном случае - ReLu - полулинейная функция (при x < 0 , y = 0, при x > 0, y = x)
model.add(
    Dense(400, activation="relu")
)  #добавление дополнительных слоев в разы ускорило скорость обучения, но скорее начало наступать и переобучение и поэтому приходится использовать меньше эпох
model.add(Dense(200, activation="relu"))
model.add(
    Dense(10, activation="softmax")
)  #здесь функция активации softmax - мягкий максимум(нормализованная экспоненциальная функция, она позволяет получить суммарное значение всех нейронов на выходе равным 1, то есть трактовать выход нейронов как вероятность)

#компилируем модель
model.compile(loss="categorical_crossentropy",
def create_new_model(regression: bool, class_num: int) -> Sequential:
    '''Create a VGG16 model with 1/2 the layers, return the model.

    Parameters
    ----------
    regression: bool
        Is the model a regression model?

    class_num: int
        If the model not regression must specify the class num.

    Returns
    -------
    model: Sequential
        Keras model.
    '''

    model = Sequential()

    model.add(
        Conv2D(32, (3, 3),
               activation='relu',
               padding='same',
               input_shape=(112, 112, 3)))
    model.add(Conv2D(32, (3, 3), activation='relu', padding='same'))
    model.add(MaxPooling2D(pool_size=(2, 2), strides=(2, 2)))

    model.add(Conv2D(64, (3, 3), activation='relu', padding='same'))
    model.add(Conv2D(64, (3, 3), activation='relu', padding='same'))
    model.add(MaxPooling2D(pool_size=(2, 2), strides=(2, 2)))

    model.add(Conv2D(128, (3, 3), activation='relu', padding='same'))
    model.add(Conv2D(128, (3, 3), activation='relu', padding='same'))
    model.add(Conv2D(128, (3, 3), activation='relu', padding='same'))
    model.add(MaxPooling2D(pool_size=(2, 2), strides=(2, 2)))

    model.add(Conv2D(256, (3, 3), activation='relu', padding='same'))
    model.add(Conv2D(256, (3, 3), activation='relu', padding='same'))
    model.add(Conv2D(256, (3, 3), activation='relu', padding='same'))
    model.add(MaxPooling2D(pool_size=(2, 2), strides=(2, 2)))

    model.add(Conv2D(256, (3, 3), activation='relu', padding='same'))
    model.add(Conv2D(256, (3, 3), activation='relu', padding='same'))
    model.add(Conv2D(256, (3, 3), activation='relu', padding='same'))
    model.add(MaxPooling2D(pool_size=(2, 2), strides=(2, 2)))

    model.add(Flatten())
    model.add(Dropout(0.2))
    model.add(Dense(2048, activation='relu'))
    model.add(Dense(2048, activation='relu'))

    # Handle if model is regression
    if regression:
        model.add(Dense(1, activation='linear'))
    else:
        model.add(Dense(class_num, activation='softmax'))

    return model
Ejemplo n.º 11
0
def create_model(**kwargs):
    base_model = VGG16(include_top=False,
                       input_shape=(WIDHT, HEIGHT, 3),
                       weights='imagenet')

    for layer in base_model.layers:
        layer.trainable = False

    for layer in base_model.layers:
        print(layer, layer.trainable)

    model = Sequential()
    model.add(base_model)
    model.add(GlobalAveragePooling2D())
    model.add(Dropout(0.3))
    model.add(Dense(LABEL_SIZE, activation='softmax'))

    model.compile(loss='categorical_crossentropy',
                  optimizer='adam',
                  metrics=['accuracy'])
    return model
Ejemplo n.º 12
0
dropout = Dropout(rate=1 / 16)(reduced_input)
output_cluster = Dense(units=num_clusters, activation="sigmoid")(dropout)
clustering_model = Model(inputs=reduced_input, outputs=output_cluster)
clustering_model.compile(optimizer="sgd", loss="categorical_hinge")
reduced_data = adata.obsm
reduced_data_array = np.zeros(shape=(num_cells, 16))
je = 0
for data_point in reduced_data:
    reduced_data_array[je] = data_point[0]
    je += 1
del reduced_data
clustering_model.fit(x=reduced_data_array, y=y_clusters, epochs=300)
clustering_model.predict(reduced_data_array)

from keras.engine.sequential import Sequential
jdesc_model = Sequential()
first_layer = Dense(units=32, input_shape=(num_genes, ), activation="relu")
jdesc_model.add(first_layer)
second_layer = Dense(units=16, activation="tanh")
jdesc_model.add(second_layer)
third_layer = Dense(units=num_clusters, activation="sigmoid")
jdesc_model.add(third_layer)
jdesc_model.compile(optimizer="sgd", loss="categorical_hinge")
jdesc_model_weights = desc_model.get_weights() + clustering_model.get_weights()
jdesc_model.set_weights(jdesc_model_weights)
jdesc_model_predictions = jdesc_model.predict(adata.X)
predicted_clusters_array = jdesc_model_predictions.argmax(axis=1)
clusters_array = clusters_ndarray.T[0]

error_array = np.zeros(shape=(num_clusters, num_clusters))
correct_array = np.zeros(shape=(num_clusters, ), dtype=int)
Ejemplo n.º 13
0
def read_dataset(image_dir: str = IMAGE_DIR, dump: bool = True, **kwargs):
    """ Read and resize images
    Save all the data in:
        TRAIN_X - pixels
        TRAIN_Y - labels
    """
    global TRAIN_X, TRAIN_Y
    logdir = "logs/scalars/" + datetime.now().strftime("%Y%m%d-%H%M%S")
    tensorboard_callback = TensorBoard(log_dir=logdir)

    base_model = InceptionV3(include_top=False,
                             weights='imagenet',
                             input_shape=(WIDHT, HEIGHT, 3))
    for layer in base_model.layers:
        layer.trainable = False

    model = Sequential()
    model.add(base_model)
    model.add(GlobalAveragePooling2D())
    #  model.add(Dense(512, activation='relu'))
    model.add(Dense(LABEL_SIZE, activation='softmax'))
    model.compile(
        loss='categorical_crossentropy',
        optimizer='adam',
        metrics=['accuracy'],
    )

    def define_label(parent_name):
        return "-".join(parent_name.split('-')[1:])

    for subdir, dirs, files in os.walk(image_dir):
        for file in files:
            path = pathlib.Path(subdir).absolute() / file
            image_label = define_label(path.parent.name)
            TRAIN_Y.append(image_label)

    label_encoder = LabelEncoder()
    TRAIN_Y = label_encoder.fit_transform(TRAIN_Y)
    TRAIN_Y = np.array(to_categorical(TRAIN_Y, num_classes=LABEL_SIZE))

    count = 0
    current_length_train_x = 0

    for subdir, dirs, files in os.walk(image_dir):
        print(f'PATH: {subdir} is processing')
        count += 1
        for file in files:
            path = pathlib.Path(subdir).absolute() / file
            image = load_img(str(path), target_size=WH)
            TRAIN_X.append(np.array(image))

        if count % 40 == 0:
            slice_left = current_length_train_x
            slice_right = slice_left + len(TRAIN_X)
            current_length_train_x = slice_right
            # convert to binary matrix (120 labels at all) 2^10 = 128
            # normalize image
            # split image

            # TODO: make active on resume iterations
            #  if count == 40:
            #      # make empty
            #      TRAIN_X = []
            #      model = load_model(f'{model_name}_iter_40.dump')
            #      continue

            x_train, x_test, y_train, y_test = train_test_split(
                np.array(TRAIN_X),
                TRAIN_Y[slice_left:slice_right],
                test_size=0.2,
                random_state=69,
            )

            # make empty
            TRAIN_X = []

            augs_gen.fit(x_train)
            model.fit_generator(
                augs_gen.flow(x_train, y_train, batch_size=25),
                validation_data=(x_test, y_test),
                validation_steps=1000,
                steps_per_epoch=1000,
                epochs=20,
                verbose=1,
                callbacks=[tensorboard_callback],
            )
            del x_train, x_test, y_train, y_test
            model.save(f'{model_name}_iter_{count}.dump')

        print(f'Executed {count} / 121')
    print('Prepare to write data on the disk')
Ejemplo n.º 14
0
#! /usr/bin/python

from keras import backend as k
from keras.engine.sequential import Sequential
from keras.layers.embeddings import Embedding

import numpy as np

model = Sequential()
model.add(Embedding(100, 64, input_length=10))

input_array = np.random.randint(1000, size=(32,10))


model.compile('rmsprop', 'mse')
output_array = model.predict(input_array)

assert output_array == (32, 10, 64)