Ejemplo n.º 1
0
def create_network(n_notes, n_durations, embed_size=100, rnn_units=256):
    """ create the structure of the neural network """
    # There are two inputs to the network: the sequence of previous note names and duration values.
    notes_in = layers.Input(shape=(None, ))
    durations_in = layers.Input(shape=(None, ))

    # The Embedding layers convert the integer values of the note names and durations into vectors.
    x1 = layers.Embedding(n_notes, embed_size)(notes_in)
    x2 = layers.Embedding(n_durations, embed_size)(durations_in)

    # The vectors are concatenated to form one long vector that will be used as input into the recurrent layers.
    x = layers.Concatenate()([x1, x2])

    # Two stacked LSTM layers are used as the recurrent part of the network. Notice how we set return_sequences to True to make
    # each layer pass the full sequence of hidden states to the next layer, rather than just the final hidden state.
    x = layers.LSTM(rnn_units, return_sequences=True)(x)
    x = layers.LSTM(rnn_units, return_sequences=True)(x)

    # The alignment function is just a Dense layer with one output unit and tanh activation. We can use a Reshape layer to
    # squash the output to a single vector, of length equal to the length of the input sequence (seq_length).
    e = layers.Dense(1, activation='tanh')(x)
    e = layers.Reshape([-1])(e)

    # The weights are calculated through applying a softmax activation to the alignment values.
    alpha = layers.Activation('softmax')(e)

    # To get the weighted sum of the hidden states, we need to use a RepeatVector layer to copy the weights rnn_units times
    # to form a matrix of shape [rnn_units, seq_length], then transpose this matrix using a Permute layer to get a matrix of
    # shape [seq_length, rnn_units]. We can then multiply this matrix pointwise with the hidden states from the final LSTM layer,
    # which also has shape [seq_length, rnn_units]. Finally, we use a Lambda layer to perform the summation along the seq_length
    # axis, to give the context vector of length rnn_units.
    alpha_repeated = layers.Permute([2,
                                     1])(layers.RepeatVector(rnn_units)(alpha))
    c = layers.Multiply()([x, alpha_repeated])
    c = layers.Lambda(lambda xin: K.sum(xin, axis=1),
                      output_shape=(rnn_units, ))(c)

    # The network has a double-headed output, one for the next note name and one for the next note length.
    notes_out = layers.Dense(n_notes, activation='softmax', name='pitch')(c)
    durations_out = layers.Dense(n_durations,
                                 activation='softmax',
                                 name='duration')(c)

    # The final model accepts the previous note names and note durations as input and outputs a distribution
    # for the next note name and next note duration.
    model = Model([notes_in, durations_in], [notes_out, durations_out])

    # The model is compiled using categorical_crossentropy for both the note name and note duration output heads, as this is a
    # multiclass classification problem.

    model.compile(
        loss=['categorical_crossentropy', 'categorical_crossentropy'],
        optimizer=RMSprop(lr=0.001))

    return model
Ejemplo n.º 2
0
def attention_with_count_vector(inputs, count_vectors):
    # inputs.shape = (batch_size, time_steps, input_dim)
    # count_vectors.shape = (batch_size, sym_count)
    time_steps = int(inputs.shape[1])
    input_dim = int(inputs.shape[2])
    a = layers.Dense(time_steps, activation='softmax')(count_vectors)
    a = layers.RepeatVector(input_dim)(a)
    a_probs = layers.Permute((2, 1), name='attention_vec')(a)
    output_attention_mul = layers.multiply([inputs, a_probs],
                                           name='attention_mul')
    return output_attention_mul
def create_q_model(actions):
    """This function creates a convolution neural network"""
    # Network defined by the Deepmind paper
    inputs = layers.Input(shape=(4, 84, 84))
    layer0 = layers.Permute((2, 3, 1))(inputs)
    layer1 = layers.Conv2D(32, 8, strides=4, activation="relu")(layer0)
    layer2 = layers.Conv2D(64, 4, strides=2, activation="relu")(layer1)
    layer3 = layers.Conv2D(64, 3, strides=1, activation="relu")(layer2)
    layer4 = layers.Flatten()(layer3)
    layer5 = layers.Dense(512, activation="relu")(layer4)
    action = layers.Dense(actions, activation="linear")(layer5)
    return K.Model(inputs=inputs, outputs=action)
Ejemplo n.º 4
0
def build_model_cnn(input_shape, actions):
    """
    Creates a Convolutional Neural Network.
    """
    model = models.Sequential()
    model.add(layers.Permute((2, 3, 1), input_shape=input_shape))
    model.add(layers.Convolution2D(32, (4, 4), strides=(2, 2), activation="relu"))
    model.add(layers.Convolution2D(64, (3, 3), strides=(1, 1), activation="relu"))
    model.add(layers.Flatten())
    model.add(layers.Dense(32, activation="relu"))
    model.add(layers.Dense(actions, activation="linear"))
    return model
Ejemplo n.º 5
0
def duc(x, factor=8, output_shape=(224, 224, 1), name=None):
    if K.image_data_format() == 'channels_last':
        bn_axis = -1
    else:
        bn_axis = 1

    if name is None:
        name = 'duc_%s' % factor
    H, W, c, r = output_shape[0], output_shape[1], output_shape[2], factor
    h = H // r
    w = W // r
    x = KL.Conv2D(c * r * r, (3, 3), padding='same', name='conv_%s' % name)(x)
    x = KL.BatchNormalization(axis=bn_axis, name='bn_%s' % name)(x)
    x = KL.Activation('relu')(x)
    x = KL.Permute((3, 1, 2))(x)
    x = KL.Reshape((c, r, r, h, w))(x)
    x = KL.Permute((1, 4, 2, 5, 3))(x)
    x = KL.Reshape((c, H, W))(x)
    x = KL.Permute((2, 3, 1))(x)

    return x
Ejemplo n.º 6
0
def attention_block_3(inputs, feature_cnt, dim):
    a = Flatten()(inputs)
    a = Dense(feature_cnt * dim, activation='softmax')(a)
    a = L.Reshape((
        feature_cnt,
        dim,
    ))(a)
    a = L.Lambda(lambda x: K1.sum(x, axis=2), name='attention')(a)
    a = L.RepeatVector(dim)(a)
    a_probs = L.Permute((2, 1), name='attention_vec')(a)
    attention_out = L.Multiply()([inputs, a_probs])
    return attention_out
def build_model(input_shape, actions):
    model = models.Sequential()
    model.add(layers.Permute((2, 3, 1), input_shape=input_shape))
    model.add(
        layers.Convolution2D(32, (8, 8), strides=(4, 4), activation="relu"))
    model.add(
        layers.Convolution2D(64, (4, 4), strides=(2, 2), activation="relu"))
    model.add(
        layers.Convolution2D(64, (3, 3), strides=(1, 1), activation="relu"))
    model.add(layers.Flatten())
    model.add(layers.Dense(512, activation="relu"))
    model.add(layers.Dense(actions, activation="linear"))
    return model
def create_q_model(actions):
    inputs = layers.Input(shape=(4, 84, 84))
    layer0 = layers.Permute((2, 3, 1))(inputs)
    layer1 = layers.Conv2D(32, 8, strides=4, activation="relu",
                           data_format="channels_last")(layer0)
    layer2 = layers.Conv2D(64, 4, strides=2, activation="relu",
                           data_format="channels_last")(layer1)
    layer3 = layers.Conv2D(64, 3, strides=1, activation="relu",
                           data_format="channels_last")(layer2)
    layer4 = layers.Flatten()(layer3)
    layer5 = layers.Dense(512, activation="relu")(layer4)
    action = layers.Dense(actions, activation="linear")(layer5)

    return K.Model(inputs=inputs, outputs=action)
Ejemplo n.º 9
0
def build_model(sigs_1d, sigs_0d, sigs_predict, rho_length_in, rho_length_out,
                lookback, delay, rnn_type, rnn_size, rnn_activation,
                num_rnn_layers, dense_0d_size, dense_0d_activation,
                dense_final_size, dense_final_activation, num_final_layers):

    if (rnn_type == 'LSTM'):
        rnn_layer = layers.LSTM
    elif (rnn_type == 'GRU'):
        rnn_layer = layers.GRU
    else:
        raise ValueError('rnn_type in conf must be GRU or LSTM')

    input_0d = layers.Input(shape=(
        delay + 1,
        len(sigs_0d),
    ))
    input_1d = layers.Input(shape=(
        lookback + 1,
        rho_length_in * len(sigs_1d),
    ))

    permuted_0d = layers.Permute((
        2,
        1,
    ))(input_0d)
    compressed_0d = layers.Dense(dense_0d_size)(permuted_0d)
    final_input_0d = layers.Flatten()(compressed_0d)

    final_input_1d = input_1d
    for i in range(num_rnn_layers - 1):
        final_input_1d = rnn_layer(rnn_size,
                                   activation=rnn_activation,
                                   return_sequences=True)(final_input_1d)
    final_input_1d = rnn_layer(rnn_size,
                               activation=rnn_activation)(final_input_1d)

    output = layers.Concatenate()([final_input_0d, final_input_1d])

    for i in range(num_final_layers):
        output = layers.Dense(dense_final_size,
                              activation=dense_final_activation)(output)

    output = layers.Dense(rho_length_out * len(sigs_predict))(output)

    model = models.Model(inputs=[input_0d, input_1d], outputs=output)

    print(model.summary())
    return model
Ejemplo n.º 10
0
def train_rgbmaps():

    sequence_length = dataset_parameters["sequence_length"]

    model = models.Sequential()
    if sequence_length == 0:
        model.add(
            layers.Conv2D(64, (3, 3),
                          activation="relu",
                          input_shape=(image_size, image_size, 3)))
    else:
        model.add(
            layers.Permute(
                (2, 3, 1, 4),
                input_shape=(sequence_length, image_size, image_size, 3)))
        model.add(layers.Reshape(
            (image_size, image_size, sequence_length * 3)))
        model.add(layers.Conv2D(64, (3, 3), activation="relu"))
    model.add(layers.MaxPooling2D((2, 2)))
    model.add(layers.Conv2D(64, (3, 3), activation="relu"))
    model.add(layers.MaxPooling2D((2, 2)))
    model.add(layers.Conv2D(128, (3, 3), activation="relu"))
    model.add(layers.MaxPooling2D((2, 2)))
    model.add(layers.Conv2D(128, (3, 3), activation="relu"))
    model.add(layers.MaxPooling2D((2, 2)))
    model.add(layers.Flatten())
    model.add(layers.Dropout(0.25))
    model.add(layers.Dense(128, activation="relu"))
    model.add(layers.Dropout(0.25))
    model.add(layers.Dense(1, activation="linear"))
    model.summary()

    # Compile the model.
    optimizer = "rmsprop"
    #optimizer = optimizers.Adagrad(lr=0.7, epsilon=None, decay=0.2)
    model.compile(optimizer=optimizer, loss="mse", metrics=["mae"])

    # Train the model.
    history = model.fit_generator(generator_train,
                                  steps_per_epoch=steps_per_epoch,
                                  epochs=epochs,
                                  validation_data=generator_validate,
                                  validation_steps=validation_steps,
                                  callbacks=[tensorboard_callback])

    histories["rgbnet"] = history
    modelutils.save_model_and_history(output_path, model, history,
                                      training_details, "rgbnet")
Ejemplo n.º 11
0
def build_attn_with_layer(seq, controller, layer, cell_size=300):
    """ Build attention mechanism in computation graph. """
    controller_repeated = layers.RepeatVector(20)(controller)
    controller_repeated = layer(controller_repeated)

    attention = layers.Lambda(my_dot, output_shape=(20,))([controller_repeated, seq])

    attention_s = layers.Flatten()(attention)
    attention = layers.Lambda(to_prob, output_shape=(20,))(attention_s)

    attention_repeated = layers.RepeatVector(cell_size)(attention)
    attention_repeated = layers.Permute((2, 1))(attention_repeated)

    weighted = layers.merge([attention_repeated, seq], mode='mul')
    summed = layers.Lambda(sum_seq, output_shape=(cell_size,))(weighted)
    return summed, attention
def se_block(tensor, ratio=8):
    n_channels = K.int_shape(tensor)[-1]

    se_feature = layers.GlobalAveragePooling2D()(tensor)
    se_feature = layers.Reshape((1, 1, n_channels))(se_feature)
    assert K.int_shape(se_feature)[1:] == (1, 1, n_channels)
    se_feature = layers.Dense(n_channels // ratio,
                              activation='relu')(se_feature)
    assert K.int_shape(se_feature)[1:] == (1, 1, n_channels // ratio)
    se_feature = layers.Dense(n_channels, activation='sigmoid')(se_feature)
    assert K.int_shape(se_feature)[1:] == (1, 1, n_channels)
    if K.image_data_format() == 'channels_first':
        se_feature = layers.Permute((3, 1, 2))(se_feature)

    se_feature = layers.multiply([tensor, se_feature])
    return se_feature
Ejemplo n.º 13
0
	def call(self, inputs, training=None):
		#inflate and permute input tensor (num/dim_capsule axis fipped)
		inflate = layers.Reshape((self.h_image, self.w_image, self.input_dim_capsule, self.input_num_capsule))
		conv_out = layers.Permute((1, 2, 4, 3))(inflate(inputs))

		pose_in = layers.Reshape((self.h_image, self.w_image, self.input_num_capsule, self.h_capsule, self.input_w_capsule))(conv_out[..., :-1])
		coeffs_in = K.expand_dims(K.expand_dims(conv_out[..., -1], axis=-1), axis=-1)

		pose_votes = tf.einsum('abcmjk,bcmnij->abcmnik', pose_in, self.W)
		# pose_votes.shape=[None, self.h_image, self.w_image, input_num_capsule, num_capsule, h_capsule, w_capsule]
		assert self.h_capsule == int(pose_votes.shape[-2]), self.w_capsule == int(pose_votes.shape[-1])

		votes_in = layers.Reshape((self.h_image, self.w_image, self.input_num_capsule, self.num_capsule, self.dim_capsule -1))(pose_votes)
		poses, coeffs = routing_alg(votes_in, coeffs_in, self.bias, self.iters)
		#deflate capsules for output
		deflate = layers.Reshape((self.h_image, self.w_image, -1))
		final = K.concatenate([deflate(poses), deflate(coeffs)], axis=-1)
		return final
Ejemplo n.º 14
0
def build_branch_bilstm_position_am(emb):
    """
    build attention model according position infomation
    result not good.
    """
    m_lstm = klayers.Bidirectional(
        klayers.LSTM(args.nencoder, return_sequences=True,
                     trainable=True))(emb)
    attention = klayers.TimeDistributed(klayers.Dense(
        1, activation='tanh'))(m_lstm)
    attention = klayers.Flatten()(attention)
    attention = klayers.Activation('softmax')(attention)
    attention = klayers.RepeatVector(args.ndecoder * 2)(attention)
    attention = klayers.Permute([2, 1])(attention)

    m_lstm_am = klayers.merge([m_lstm, attention], mode='mul')
    m_lstm_am = klayers.Lambda(lambda xin: K.sum(xin, axis=1))(m_lstm_am)

    return m_lstm_am
Ejemplo n.º 15
0
	def call(self, inputs, training=None):
		#inflate and permute input tensor (num/dim_capsule axis fipped)
		inflate = layers.Reshape((self.h_image, self.w_image, self.input_dim_capsule, self.input_num_capsule))
		conv_out = layers.Permute((1, 2, 4, 3))(inflate(inputs))
		
		pose_in = layers.Reshape((self.h_image, self.w_image, self.input_num_capsule, self.h_capsule, self.input_w_capsule))(conv_out[..., :-1])
		coeffs_in = K.expand_dims(K.expand_dims(conv_out[..., -1], axis=-1), axis=-1)

		pose_votes = tf.einsum('abcmjk,bcmnij->abcmnik', pose_in, self.W)
		# pose_votes.shape=[None, self.h_image, self.w_image, input_num_capsule, num_capsule, h_capsule, w_capsule]
		assert self.h_capsule == int(pose_votes.shape[-2]), self.w_capsule == int(pose_votes.shape[-1])

		votes_in = layers.Reshape((self.h_image, self.w_image, self.input_num_capsule, self.num_capsule, self.dim_capsule -1))(pose_votes)
		aug_votes = self.coord_add(votes_in, self.h_image, self.w_image)
		# collapsed_coeffs.shape=[None, 1, 1, self.h_image*self.w_image*input_num_capsule]
		# collapsed_votes.shape=[None, 1, 1, self.h_image*self.w_image*input_num_capsule, num_capsule, h_capsule*w_capsule]
		collapsed_coeffs = layers.Reshape((1, 1, self.h_image*self.w_image*self.input_num_capsule, 1, 1))(coeffs_in)
		collapsed_votes = layers.Reshape((1, 1, self.h_image*self.w_image*self.input_num_capsule, self.num_capsule, \
			self.h_capsule*self.w_capsule))(aug_votes)
		poses, coeffs = routing_alg(collapsed_votes, collapsed_coeffs, self.bias, self.iters)
		return tf.squeeze(coeffs, [1, 2, -3, -1])
Ejemplo n.º 16
0
def tdcnn(main_input, time):
    pool_size1 = (1, 4, 2)
    pool_size2 = (1, 2, 4)

    activation_name = 'elu'

    # Input
    main_batch_norm = BatchNormalization()(main_input)

    conv3d = Conv3D(kernel_size=(5, 4, 2), strides=(1, 1, 1), filters=128, padding='same')(main_input)
    batch_norm = BatchNormalization()(conv3d)
    conv = Activation(activation_name)(batch_norm)

    up_sample1 = AveragePooling3D(pool_size=pool_size1, strides=(1, 1, 1), padding='same')(conv)
    up_sample2 = AveragePooling3D(pool_size=pool_size2, strides=(1, 1, 1), padding='same')(conv)
    conv_concat = concatenate([main_batch_norm, conv, up_sample1, up_sample2])

    conv_1d = Conv3D(kernel_size=(1, 1, 1), strides=(1, 1, 1), filters=16)(conv_concat)
    batch_norm = BatchNormalization()(conv_1d)
    activation = Activation(activation_name)(batch_norm)

    bidir_rnn = Reshape((time, -1))(activation)
    bidir_rnn1 = Bidirectional(LSTM(100, dropout=0.5, recurrent_dropout=0.5, return_sequences=True))(bidir_rnn)
    bidir_rnn2 = Bidirectional(LSTM(100, dropout=0.5, recurrent_dropout=0.5, return_sequences=True))(bidir_rnn1)

    # bidir_rnn1 = Bidirectional(GRU(100, dropout=0.5, recurrent_dropout=0.5, return_sequences=True))(bidir_rnn)
    # bidir_rnn2 = Bidirectional(GRU(100, dropout=0.5, recurrent_dropout=0.5, return_sequences=True))(bidir_rnn1)

    permute = Permute((2, 1))(bidir_rnn2)
    dense_1 = Dense(X_train.shape[1:], activation='softmax')(permute)
    prob = layers.Permute((2, 1), name='attention_vec')(dense_1)
    attention_mul = layers.multiply([main_input, prob])
    attention_mul = layers.Flatten()(attention_mul)
    flat = Flatten()(attention_mul)
    drop = Dropout(0.5)(flat)
    dense_2 = Dense(200)(drop)
    main_output = Dense(2, activation='softmax')(dense_2)

    return main_output
Ejemplo n.º 17
0
def squeeze_excite_block(input, ratio=16):
    init = input
    channel_axis = 1 if K.image_data_format() == "channels_first" else -1
    filters = init._keras_shape[channel_axis]
    se_shape = (1, 1, filters)

    se = layers.GlobalAveragePooling2D()(init)
    se = layers.Reshape(se_shape)(se)
    se = layers.Dense(filters // ratio,
                      activation='relu',
                      kernel_initializer='he_normal',
                      use_bias=False)(se)
    se = layers.Dense(filters,
                      activation='sigmoid',
                      kernel_initializer='he_normal',
                      use_bias=False)(se)

    if K.image_data_format() == 'channels_first':
        se = layers.Permute((3, 1, 2))(se)

    x = layers.multiply([init, se])
    return x
def build_models(input_shape, actions):

    cnn_model = models.Sequential()
    cnn_model.add(layers.Permute((2, 3, 1), input_shape=input_shape))
    cnn_model.add(
        layers.Convolution2D(32, (8, 8), strides=(4, 4), activation="relu"))
    cnn_model.add(
        layers.Convolution2D(64, (4, 4), strides=(2, 2), activation="relu"))
    cnn_model.add(
        layers.Convolution2D(64, (3, 3), strides=(1, 1), activation="relu"))
    cnn_model.add(layers.Flatten())

    v_model_input = layers.Input(shape=input_shape)
    v_model_output = cnn_model(v_model_input)
    v_model_output = layers.Dense(512, activation="relu")(v_model_output)
    v_model_output = layers.Dense(1, activation="linear")(v_model_output)
    v_model = models.Model(v_model_input, v_model_output)

    mu_model_input = layers.Input(shape=input_shape)
    mu_model_output = cnn_model(mu_model_input)
    mu_model_output = layers.Dense(512, activation="relu")(mu_model_output)
    mu_model_output = layers.Dense(actions,
                                   activation="linear")(mu_model_output)
    mu_model = models.Model(mu_model_input, mu_model_output)

    l_model_action_input = layers.Input(shape=(actions, ))
    l_model_action_output = l_model_action_input
    l_model_observation_input = layers.Input(shape=input_shape)
    l_model_observation_output = cnn_model(l_model_observation_input)
    l_model_output = layers.Concatenate()(
        [l_model_action_output, l_model_observation_output])
    l_model_output = layers.Dense(512, activation="relu")(l_model_output)
    l_model_output = layers.Dense(((actions * actions + actions) // 2),
                                  activation="linear")(l_model_output)
    l_model = models.Model([l_model_action_input, l_model_observation_input],
                           l_model_output)

    return v_model, mu_model, l_model
Ejemplo n.º 19
0
def model_CNN(embedding_matrix, max_sent_len, n_out):
    print(config.params_dict)

    # Take sentence encoded as indices split in three parts and convert it to embeddings
    sentence_input = layers.Input(shape=(max_sent_len,), dtype='int32', name='sentence_input')
    word_embeddings = layers.Embedding(output_dim=embedding_matrix.shape[1],
                                       input_dim=embedding_matrix.shape[0],
                                       input_length=max_sent_len, weights=[embedding_matrix],
                                       mask_zero=True, trainable=False)(sentence_input)
    word_embeddings = layers.Dropout(config.Params.dropout1)(word_embeddings)

    # Take token markers that identify entity positions, convert to position embeddings
    entity_markers = layers.Input(shape=(2, max_sent_len,), dtype='int8', name='entity_markers')

    pos_embeddings = layers.wrappers.TimeDistributed(
        layers.Embedding(output_dim=config.Params.position_emb, input_dim=(max_sent_len * 2) + 1, input_length=max_sent_len,
                         mask_zero=False, embeddings_regularizer=regularizers.l2(), trainable=True),
        name='pos_embedding')(entity_markers)

    pos_embeddings = layers.Permute((2, 1, 3))(pos_embeddings)
    pos_embeddings = layers.Reshape((max_sent_len, config.Params.position_emb * 2))(pos_embeddings)

    # Merge word and position embeddings and apply the specified amount of CNN layers
    x = layers.concatenate([word_embeddings, pos_embeddings])

    x = MaskedConvolution1D(nb_filter=config.Params.units1, filter_length=config.Params.window_size, border_mode='same')(x)
    sentence_vector = MaskedGlobalMaxPooling1D()(x)

    sentence_vector = layers.Lambda(lambda l: K.tanh(l))(sentence_vector)

    # Apply softmax
    sentence_vector = layers.Dropout(config.Params.dropout1)(sentence_vector)
    main_output = layers.Dense(n_out, activation="softmax", name='main_output')(sentence_vector)

    model = models.Model(input=[sentence_input, entity_markers], output=[main_output])
    model.compile(optimizer=config.Params.optimizer, loss='categorical_crossentropy', metrics=['accuracy'])

    return model
Ejemplo n.º 20
0
    def buildAttention(self, seq, controller):
        controller_repeated = layers.RepeatVector(
            self._config['context_window_size'])(controller)
        controller_repeated = layers.TimeDistributedDense(
            self._w2v.conceptEmbeddingsSz)(controller_repeated)

        attention = layers.Lambda(
            my_dot, output_shape=(self._config['context_window_size'], ))(
                [controller_repeated, seq])

        attention = layers.Flatten()(attention)
        attention = layers.Lambda(
            to_prob,
            output_shape=(self._config['context_window_size'], ))(attention)

        attention_repeated = layers.RepeatVector(
            self._w2v.conceptEmbeddingsSz)(attention)
        attention_repeated = layers.Permute((2, 1))(attention_repeated)

        weighted = layers.merge([attention_repeated, seq], mode='mul')
        summed = layers.Lambda(
            sum_seq, output_shape=(self._w2v.conceptEmbeddingsSz, ))(weighted)
        return summed, attention
Ejemplo n.º 21
0
def tensor_product_vector(y_coords, x_coords, side_size):
    '''
    Hardcoded helper function to calculate the Cartesian Product
     or Tensor Product, as there does not exist a TensorDot layer 
     in Keras as of writing.

    We achieve the TensorDot by duplicating the values into a new dimension
     and muliply the tensors.
    '''
    # Duplicates vertically, so coords needs transposing.
    y_coords_dup = Duplicate(side_size, slice_axis=-2,
                             name="duplicator_y")(y_coords)

    # Transpose the Y tensor
    y_coords_dup = Kl.Permute((1, 3, 2))(y_coords_dup)

    x_coords_dup = Duplicate(side_size, slice_axis=-2,
                             name="duplicator_x")(x_coords)

    # Multiplying to obtain single coordinate.
    tensor_product = Kl.multiply([y_coords_dup, x_coords_dup])

    return tensor_product
Ejemplo n.º 22
0
def create_model(input_shape, n_class, n_instance, n_part, routings):
    """
    A Capsule Network on MNIST.
    :param input_shape: data shape, 3d, [width, height, channels]
    :param n_class: number of classes
    :param n_instance: number of instance of each class
    :param n_part: number of parts in each instance
    :param routings: number of routing iterations
    :return: Two Keras Models, the first one used for training, and the second one for evaluation.
            `eval_model` can also be used for training.
    """
    x = layers.Input(shape=input_shape)

    # Layer 1: Just a conventional Conv2D layer
    conv1 = layers.Conv2D(filters=32, kernel_size=9, strides=1, padding='valid', activation='relu', name='conv1')(x)

    # Layer 2: Conv2D layer with `squash` activation, then reshape to [None, num_capsule, dim_capsule]
    primarycaps = PrimaryCap(conv1, dim_capsule_attr=1, num_capsule=32, kernel_size=9, strides=2, padding='valid')


    # Layer 3: Capsule layer. Attention algorithm works here.
    digitcaps = CAN(num_capsule=n_class, dim_capsule_attr=1, routings=routings, num_instance=n_instance, num_part=n_part,
                    name='digitcaps')(primarycaps)


    # Layer 4: Convert capsule probabilities to a classification

    out_caps = Lambda(lambda x: x[:, :, :, 0],name='select_probability')(digitcaps)
    out_caps = layers.Permute([2, 1], name='capsnet')(out_caps)  # for clasification we swap order to be instance,class

    # Capture the pose
    out_pose = Lambda(lambda x: x[:, :, :, 1:1+canlayer.dim_geom],name='select_pose')(digitcaps)

    # Models for training and evaluation (prediction)
    model = models.Model([x], [out_caps,out_pose])

    return model  #
Ejemplo n.º 23
0
def create_q_model(window, n_actions):
    '''
    Creates a DQN model.

    Args.
        window: DQN inputs.
        n_actrions: DQN outputs.

    Returns.
        The DQN model.
    '''

    inputs = layers.Input(shape=(window, 84, 84))
    # rearranges layers
    dqn_layers = layers.Permute((2, 3, 1))(inputs)
    dqn_layers = layers.Conv2D(
        filters=16,
        activation='relu',
        kernel_size=8,
        strides=(4, 4),
        )(dqn_layers)
    dqn_layers = layers.Conv2D(
        filters=32,
        activation='relu',
        kernel_size=4,
        strides=(2, 2),
        )(dqn_layers)
    dqn_layers = layers.Conv2D(
        filters=64,
        activation='relu',
        kernel_size=2,
        )(dqn_layers)
    dqn_layers = layers.Flatten()(dqn_layers)
    dqn_layers = layers.Dense(512, activation="relu")(dqn_layers)
    dqn_layers = layers.Dense(256, activation="relu")(dqn_layers)
    outputs = layers.Dense(n_actions, activation="linear")(dqn_layers)
    return Model(inputs, outputs)
Ejemplo n.º 24
0
 def _create_Kao_Rnet(self, weight_path='./models/mtcnn/24net.h5'):
     '''
     
     '''
     input = KL.Input(shape=[24, 24, 3])  # change this shape to [None,None,3] to enable arbitraty shape input
     x = KL.Conv2D(28, (3, 3), strides=1, padding='valid', name='conv1', data_format="channels_last")(input)
     x = KL.PReLU(shared_axes=[1, 2], name='prelu1')(x)
     x = KL.MaxPool2D(pool_size=3, strides=2, padding='same', data_format="channels_last")(x)
 
     x = KL.Conv2D(48, (3, 3), strides=1, padding='valid', name='conv2', data_format="channels_last")(x)
     x = KL.PReLU(shared_axes=[1, 2], name='prelu2')(x)
     x = KL.MaxPool2D(pool_size=3, strides=2, data_format="channels_last")(x)
 
     x = KL.Conv2D(64, (2, 2), strides=1, padding='valid', name='conv3', data_format="channels_last")(x)
     x = KL.PReLU(shared_axes=[1, 2], name='prelu3')(x)
     x = KL.Permute((3, 2, 1))(x)
     x = KL.Flatten()(x)
     x = KL.Dense(128, name='conv4')(x)
     x = KL.PReLU(name='prelu4')(x)
     classifier = KL.Dense(2, activation='softmax', name='conv5-1')(x)
     bbox_regress = KL.Dense(4, name='conv5-2')(x)
     model = Model([input], [classifier, bbox_regress])
     model.load_weights(weight_path, by_name=True)
     return model
Ejemplo n.º 25
0
def my_model(num_actions, window):
    """
    model to use in the deep Q_learning process
    We use the same model that was described by
    Mnih et al. (2015).
    """
    # change sequencial model to input style
    input = layers.Input(shape=(window, 84, 84))
    process_input = layers.Permute((2, 3, 1))(input)

    layer1 = layers.Conv2D(32,
                           8,
                           strides=4,
                           activation="relu",
                           data_format="channels_last")(process_input)

    layer2 = layers.Conv2D(64,
                           4,
                           strides=2,
                           activation="relu",
                           data_format="channels_last")(layer1)

    layer3 = layers.Conv2D(64,
                           3,
                           strides=1,
                           activation="relu",
                           data_format="channels_last")(layer2)

    layer4 = layers.Flatten()(layer3)

    layer5 = layers.Dense(512, activation="relu")(layer4)

    nb_actions = layers.Dense(num_actions, activation="linear")(layer5)

    model = K.Model(inputs=input, outputs=nb_actions)
    return model
Ejemplo n.º 26
0
    def __call__(self, inputs):
        """CNN  block and flattening to time distributed layer from
        the original image of shape ( height, width, 3) will be mapped to (width/4, 128)"""
        #transpose because the "time axis" is width
        inputs = layers.Permute(dims=(2, 1, 3))(inputs)
        # flatten the height and channels to one dimension, after this the dimension
        # is batch, width, len(height)*len(channels)
        encoder_features = layers.TimeDistributed(layers.Flatten())(inputs)

        x = layers.Bidirectional(
            layers.LSTM(self.rnn_hidden_size,
                        return_sequences=True,
                        use_bias=True,
                        recurrent_activation='sigmoid'))(encoder_features)
        x = layers.TimeDistributed(layers.Dense(self.rnn_hidden_size))(x)
        x = layers.Bidirectional(
            layers.LSTM(self.rnn_hidden_size,
                        return_sequences=True,
                        use_bias=True,
                        recurrent_activation='sigmoid'))(x)
        # the +1 stands for a blank character needed in CTC
        fc = layers.TimeDistributed(layers.Dense(self.char_num + 1),
                                    name="DenseSoftmax")(x)
        return fc
Ejemplo n.º 27
0
    def model(self, train):
        Input = layers.Input(shape=(self.time_step, 1))

        lstm = layers.Bidirectional(
            layers.LSTM(self.units,
                        return_sequences=True,
                        recurrent_initializer='truncated_normal'))(Input)

        attention = layers.TimeDistributed(layers.Dense(
            1, activation='tanh'))(lstm)
        attention = layers.Flatten()(attention)
        attention = layers.Activation('softmax')(attention)
        attention = layers.RepeatVector(self.units * 2)(attention)
        attention = layers.Permute([2, 1])(attention)

        #lstm = layers.Bidirectional(layers.LSTM(self.units,return_sequences = True,recurrent_initializer='truncated_normal'))(attention)
        sent_representation = layers.Multiply()([lstm, attention])
        sent_representation = layers.Lambda(
            lambda xin: K.sum(xin, axis=-2),
            output_shape=(self.units * 2, ))(sent_representation)

        Wh = layers.Dense(self.units)(sent_representation)
        # self.Ws = tf.keras.layers.Dense(self.units)
        # self.Wx = tf.keras.layers.Dense(1)
        # self.V = tf.keras.layers.Dense(1)
        O = layers.Dense(self.output_size)(Wh)

        model = keras.models.Model(inputs=Input, outputs=O)

        if train == False:
            model = keras.models.load_model('model/model.h5')

        optimizer = keras.optimizers.Adam(0.0001)
        model.compile(loss='mse', optimizer=optimizer)

        return model
Ejemplo n.º 28
0
 def test_permute(self):
   x = Normal(loc=tf.zeros([100, 10, 5]), scale=tf.ones([100, 10, 5]))
   y = layers.Permute((2, 1))(x.value())
   with self.test_session():
     self.assertEqual(y.eval().shape, (100, 5, 10))
Ejemplo n.º 29
0
class RetroProcessor(Processor):
    def process_observation(self, obs):
        img = Image.fromarray(obs)
        img = img.resize(INPUT_SHAPE).convert('L')

        return np.array(img, dtype=np.uint8)

    def process_state_batch(self, batch):
        return batch.astype(np.float32) / 255.

    def process_action(self, action):
        return actual_actions[action]


x = input_layer = layers.Input((1, ) + INPUT_SHAPE)
x = layers.Permute((2, 3, 1))(x)

# weights = K.constant( [ [ [ [0.21 , 0.72 , 0.07] ] ] ] )
# grayscale = K.sum( x * weights, axis=-1, keepdims=True )
# x = grayscale

x = layers.Conv2D(filters=32, kernel_size=(8, 8), strides=4,
                  activation='relu')(x)

x = layers.Conv2D(filters=64, kernel_size=(4, 4), strides=2,
                  activation='relu')(x)

x = layers.Conv2D(filters=64, kernel_size=(3, 3), strides=1,
                  activation='relu')(x)

x = layers.Flatten()(x)
Ejemplo n.º 30
0
def build_model(max_encoder_seq_length, max_decoder_seq_length,
                num_encoder_tokens, num_decoder_tokens, latent_dim):
    # 인코더 생성
    encoder_inputs = layers.Input(shape=(max_encoder_seq_length,
                                         num_encoder_tokens))
    encoder = layers.GRU(latent_dim, return_sequences=True, return_state=True)
    encoder_outputs, state_h = encoder(encoder_inputs)

    # 디코더 생성.
    decoder_inputs = layers.Input(shape=(max_decoder_seq_length,
                                         num_decoder_tokens))
    decoder = layers.GRU(latent_dim, return_sequences=True, return_state=True)
    decoder_outputs, _ = decoder(decoder_inputs, initial_state=state_h)

    # 어텐션 매커니즘.
    repeat_d_layer = RepeatVectorLayer(max_encoder_seq_length, 2)
    repeat_d = repeat_d_layer(decoder_outputs)

    repeat_e_layer = RepeatVectorLayer(max_decoder_seq_length, 1)
    repeat_e = repeat_e_layer(encoder_outputs)

    concat_for_score_layer = layers.Concatenate(axis=-1)
    concat_for_score = concat_for_score_layer([repeat_d, repeat_e])

    dense1_t_score_layer = layers.Dense(latent_dim // 2, activation='tanh')
    dense1_score_layer = layers.TimeDistributed(dense1_t_score_layer)
    dense1_score = dense1_score_layer(concat_for_score)

    dense2_t_score_layer = layers.Dense(1)
    dense2_score_layer = layers.TimeDistributed(dense2_t_score_layer)
    dense2_score = dense2_score_layer(dense1_score)
    dense2_score = layers.Reshape(
        (max_decoder_seq_length, max_encoder_seq_length))(dense2_score)

    softmax_score_layer = layers.Softmax(axis=-1)
    softmax_score = softmax_score_layer(dense2_score)

    repeat_score_layer = RepeatVectorLayer(latent_dim, 2)
    repeat_score = repeat_score_layer(softmax_score)

    permute_e = layers.Permute((2, 1))(encoder_outputs)
    repeat_e_layer = RepeatVectorLayer(max_decoder_seq_length, 1)
    repeat_e = repeat_e_layer(permute_e)

    attended_mat_layer = layers.Multiply()
    attended_mat = attended_mat_layer([repeat_score, repeat_e])

    context_layer = layers.Lambda(lambda x: K.sum(x, axis=-1),
                                  lambda x: tuple(x[:-1]))
    context = context_layer(attended_mat)
    concat_context_layer = layers.Concatenate(axis=-1)
    concat_context = concat_context_layer([context, decoder_outputs])
    attention_dense_output_layer = layers.Dense(latent_dim, activation='tanh')
    attention_output_layer = layers.TimeDistributed(
        attention_dense_output_layer)
    attention_output = attention_output_layer(concat_context)
    decoder_dense = layers.Dense(num_decoder_tokens, activation='softmax')
    decoder_outputs = decoder_dense(attention_output)

    # 모델 생성
    model = models.Model([encoder_inputs, decoder_inputs], decoder_outputs)
    model.compile(optimizer='rmsprop',
                  loss='categorical_crossentropy',
                  metrics=['acc'])
    model.summary()

    return model