Ejemplo n.º 1
0
 def test_unweighted_all_correct(self):
     s_obj = metrics.PrecisionAtRecall(0.7)
     inputs = np.random.randint(0, 2, size=(100, 1))
     y_pred = K.constant(inputs, dtype='float32')
     y_true = K.constant(inputs)
     result = s_obj(y_true, y_pred)
     assert np.isclose(1, K.eval(result))
Ejemplo n.º 2
0
 def test_PrecisionAtRecall(self, distribution):
     label_prediction = ([0, 0, 0, 1, 1], [0, 0.3, 0.8, 0.3, 0.8])
     with distribution.scope():
         metric = metrics.PrecisionAtRecall(0.5)
         self.evaluate([v.initializer for v in metric.variables])
         updates = distribution.run(metric, args=label_prediction)
         self.evaluate(updates)
     self.assertAllClose(metric.result(), 0.5)
Ejemplo n.º 3
0
    def test_unweighted_low_recall(self):
        s_obj = metrics.PrecisionAtRecall(0.4)
        pred_values = [0.0, 0.1, 0.2, 0.3, 0.4, 0.1, 0.15, 0.25, 0.26, 0.26]
        label_values = [0, 0, 0, 0, 0, 1, 1, 1, 1, 1]

        y_pred = K.constant(pred_values, dtype='float32')
        y_true = K.constant(label_values)
        result = s_obj(y_true, y_pred)
        assert np.isclose(0.5, K.eval(result))
Ejemplo n.º 4
0
    def test_unweighted_high_recall(self):
        s_obj = metrics.PrecisionAtRecall(0.8)
        pred_values = [0.0, 0.1, 0.2, 0.3, 0.5, 0.4, 0.5, 0.6, 0.8, 0.9]
        label_values = [0, 0, 0, 0, 0, 1, 1, 1, 1, 1]
        # For a score between 0.4 and 0.5, we expect 0.8 precision, 0.8 recall.

        y_pred = K.constant(pred_values, dtype='float32')
        y_true = K.constant(label_values)
        result = s_obj(y_true, y_pred)
        assert np.isclose(0.8, K.eval(result))
Ejemplo n.º 5
0
    def test_weighted(self):
        s_obj = metrics.PrecisionAtRecall(0.4)
        pred_values = [0.0, 0.1, 0.2, 0.3, 0.4, 0.01, 0.02, 0.25, 0.26, 0.26]
        label_values = [0, 0, 0, 0, 0, 1, 1, 1, 1, 1]
        weight_values = [2, 2, 1, 1, 1, 1, 1, 2, 2, 2]

        y_pred = K.constant(pred_values, dtype='float32')
        y_true = K.constant(label_values, dtype='float32')
        weights = K.constant(weight_values)
        result = s_obj(y_true, y_pred, sample_weight=weights)
        assert np.isclose(2. / 3., K.eval(result))
Ejemplo n.º 6
0
    def test_config(self):
        s_obj = metrics.PrecisionAtRecall(0.4,
                                          num_thresholds=100,
                                          name='precision_at_recall_1')
        assert s_obj.name == 'precision_at_recall_1'
        assert s_obj.recall == 0.4
        assert s_obj.num_thresholds == 100

        # Check save and restore config
        s_obj2 = metrics.PrecisionAtRecall.from_config(s_obj.get_config())
        assert s_obj2.name == 'precision_at_recall_1'
        assert s_obj2.recall == 0.4
        assert s_obj2.num_thresholds == 100
Ejemplo n.º 7
0
 def test_invalid_num_thresholds(self):
     with pytest.raises(Exception):
         metrics.PrecisionAtRecall(0.4, num_thresholds=-1)
Ejemplo n.º 8
0
 def test_invalid_sensitivity(self):
     with pytest.raises(Exception):
         metrics.PrecisionAtRecall(-1)