Ejemplo n.º 1
0
 def __init__(self, offset_creator_class, weight_basis,
              filters,
              kernel_size,
              strides=(1, 1),
              padding='valid',
              data_format=None,
              activation=None,
              use_bias=True,
              kernel_initializer='glorot_uniform',
              bias_initializer='zeros',
              kernel_regularizer=None,
              bias_regularizer=None,
              activity_regularizer=None,
              kernel_constraint=None,
              bias_constraint=None,
              **kwargs):
     super(RProjLocallyConnected2D, self).__init__(offset_creator_class, weight_basis, **kwargs)
     self.filters = filters
     self.kernel_size = conv_utils.normalize_tuple(kernel_size, 2, 'kernel_size')
     self.strides = conv_utils.normalize_tuple(strides, 2, 'strides')
     self.padding = conv_utils.normalize_padding(padding)
     if self.padding != 'valid':
         raise ValueError('Invalid border mode for LocallyConnected2D '
                          '(only "valid" is supported): ' + padding)
     self.data_format = conv_utils.normalize_data_format(data_format)
     self.activation = activations.get(activation)
     self.use_bias = use_bias
     self.kernel_initializer = initializers.get(kernel_initializer)
     self.bias_initializer = initializers.get(bias_initializer)
     self.kernel_regularizer = regularizers.get(kernel_regularizer)
     self.bias_regularizer = regularizers.get(bias_regularizer)
     self.activity_regularizer = regularizers.get(activity_regularizer)
     self.kernel_constraint = constraints.get(kernel_constraint)
     self.bias_constraint = constraints.get(bias_constraint)
     self.input_spec = InputSpec(ndim=4)
Ejemplo n.º 2
0
    def __init__(self, filters, kernel_size,strides=1,padding='same',dilation_rate=1,
                 bias_initializer='zeros',kernel_initializer='glorot_uniform', activation='linear', weights=None,
                 border_mode='valid', subsample_length=1,
                 kernel_regularizer=None, bias_regularizer=None, activity_regularizer=None,
                 kernel_constraint=None, bias_constraint=None,
                 use_bias=True, input_dim=None, input_length=None, tied_to=None,data_format='channels_last',rank=1,learnedKernel=None,layer_inner=None,
                 **kwargs):
        if border_mode not in {'valid', 'same'}:
            raise Exception('Invalid border mode for Convolution1D:', border_mode)
        self.input_spec = [InputSpec(ndim=3)]
        self.input_dim = input_dim
        self.input_length = input_length
        self.tied_to = tied_to
        self.learnedKernel = np.array(learnedKernel)
        #self.tied_to.set_weights([weights, bias])
        self.strides = conv_utils.normalize_tuple(strides, rank, 'strides')
        self.padding = conv_utils.normalize_padding(padding)
        self.dilation_rate = conv_utils.normalize_tuple(dilation_rate, rank, 'dilation_rate')
        self.data_format = data_format
        self.filters = filters
        if self.tied_to is not None:
            self.kernel_size = self.tied_to.kernel_size
        else:
            self.kernel_size = kernel_size
        self.kernel_initializer = initializers.get(kernel_initializer)
        self.bias_initializer = initializers.get(bias_initializer)
        self.activation = activations.get(activation)
        assert border_mode in {'valid', 'same'}, 'border_mode must be in {valid, same}'
        self.border_mode = border_mode
        self.subsample_length = subsample_length
        self.subsample = (subsample_length, 1)

        self.kernel_regularizer = regularizers.get(kernel_regularizer)
        self.bias_regularizer = regularizers.get(bias_regularizer)
        self.activity_regularizer = regularizers.get(activity_regularizer)

        self.kernel_constraint = constraints.get(kernel_constraint)
        self.bias_constraint = constraints.get(bias_constraint)

        self.use_bias = use_bias

        self.rank = 1

        self.layer_inner = layer_inner

        if self.input_dim:
            kwargs['input_shape'] = (self.input_length, self.input_dim)

        #self.layer_inner = kwargs.pop('layer_inner')

        super(Convolution1D_tied, self).__init__(**kwargs)
Ejemplo n.º 3
0
 def __init__(self,
              filters,
              kernel_size,
              strides=(1, 1),
              padding='valid',
              data_format=None,
              activation=None,
              use_bias=True,
              kernel_initializer='glorot_uniform',
              bias_initializer='zeros',
              kernel_regularizer=None,
              bias_regularizer=None,
              activity_regularizer=None,
              kernel_constraint=None,
              bias_constraint=None,
              implementation=1,
              **kwargs):
     super().__init__(**kwargs)
     self.filters = filters
     self.kernel_size = conv_utils.normalize_tuple(kernel_size, 2,
                                                   'kernel_size')
     self.strides = conv_utils.normalize_tuple(strides,
                                               2,
                                               'strides',
                                               allow_zero=True)
     self.padding = conv_utils.normalize_padding(padding)
     if self.padding != 'valid' and implementation == 1:
         raise ValueError(
             'Invalid border mode for LocallyConnected2D '
             '(only "valid" is supported if implementation is 1): ' +
             padding)
     self.data_format = conv_utils.normalize_data_format(data_format)
     self.activation = activations.get(activation)
     self.use_bias = use_bias
     self.kernel_initializer = initializers.get(kernel_initializer)
     self.bias_initializer = initializers.get(bias_initializer)
     self.kernel_regularizer = regularizers.get(kernel_regularizer)
     self.bias_regularizer = regularizers.get(bias_regularizer)
     self.activity_regularizer = regularizers.get(activity_regularizer)
     self.kernel_constraint = constraints.get(kernel_constraint)
     self.bias_constraint = constraints.get(bias_constraint)
     self.implementation = implementation
     self.input_spec = InputSpec(ndim=4)
Ejemplo n.º 4
0
 def __init__(self,
              filters,
              kernel_size,
              rank=1,
              strides=1,
              padding='valid',
              data_format='channels_last',
              dilation_rate=1,
              activation=None,
              use_bias=True,
              kernel_initializer='glorot_uniform',
              bias_initializer='zeros',
              kernel_regularizer=None,
              bias_regularizer=None,
              activity_regularizer=None,
              kernel_constraint=None,
              bias_constraint=None,
              **kwargs):
     super(Conv1D_linearphase, self).__init__(**kwargs)
     self.rank = rank
     self.filters = filters
     self.kernel_size_ = kernel_size
     if kernel_size % 2:
         self.kernel_size = conv_utils.normalize_tuple(
             kernel_size // 2 + 1, rank, 'kernel_size')
     else:
         self.kernel_size = conv_utils.normalize_tuple(
             kernel_size // 2, rank, 'kernel_size')
     self.strides = conv_utils.normalize_tuple(strides, rank, 'strides')
     self.padding = conv_utils.normalize_padding(padding)
     self.data_format = conv_utils.normalize_data_format(data_format)
     self.dilation_rate = conv_utils.normalize_tuple(
         dilation_rate, rank, 'dilation_rate')
     self.activation = activations.get(activation)
     self.use_bias = use_bias
     self.kernel_initializer = initializers.get(kernel_initializer)
     self.bias_initializer = initializers.get(bias_initializer)
     self.kernel_regularizer = regularizers.get(kernel_regularizer)
     self.bias_regularizer = regularizers.get(bias_regularizer)
     self.activity_regularizer = regularizers.get(activity_regularizer)
     self.kernel_constraint = constraints.get(kernel_constraint)
     self.bias_constraint = constraints.get(bias_constraint)
     self.input_spec = InputSpec(ndim=self.rank + 2)
Ejemplo n.º 5
0
 def __init__(self,
              pool_function,
              pool_size,
              strides,
              padding='valid',
              data_format='channels_last',
              name=None,
              **kwargs):
     super(Pooling3D, self).__init__(name=name, **kwargs)
     if data_format is None:
         data_format = backend.image_data_format()
     if strides is None:
         strides = pool_size
     self.pool_function = pool_function
     self.pool_size = conv_utils.normalize_tuple(pool_size, 3, 'pool_size')
     self.strides = conv_utils.normalize_tuple(strides, 3, 'strides')
     self.padding = conv_utils.normalize_padding(padding)
     self.data_format = conv_utils.normalize_data_format(data_format)
     self.input_spec = InputSpec(ndim=5)
Ejemplo n.º 6
0
 def __init__(self,
              rank,
              filters,
              kernel_size,
              strides=1,
              padding='valid',
              data_format=None,
              dilation_rate=1,
              activation=None,
              use_bias=True,
              kernel_initializer='he_complex',
              bias_initializer='zeros',
              kernel_regularizer=None,
              bias_regularizer=None,
              activity_regularizer=None,
              kernel_constraint=None,
              bias_constraint=None,
              seed=None,
              spectral_parametrization=False,
              **kwargs):
     super(_ComplexConv, self).__init__(**kwargs)
     self.rank = rank
     self.filters = filters
     self.kernel_size = conv_utils.normalize_tuple(kernel_size, rank,
                                                   'kernel_size')
     self.strides = conv_utils.normalize_tuple(strides, rank, 'strides')
     self.padding = conv_utils.normalize_padding(padding)
     self.data_format = K.normalize_data_format(data_format)
     self.dilation_rate = conv_utils.normalize_tuple(
         dilation_rate, rank, 'dilation_rate')
     self.activation = activations.get(activation)
     self.use_bias = use_bias
     self.kernel_initializer = cinitializers.get(kernel_initializer)
     self.bias_initializer = cinitializers.get(bias_initializer)
     self.kernel_regularizer = regularizers.get(kernel_regularizer)
     self.bias_regularizer = regularizers.get(bias_regularizer)
     self.activity_regularizer = regularizers.get(activity_regularizer)
     self.kernel_constraint = constraints.get(kernel_constraint)
     self.bias_constraint = constraints.get(bias_constraint)
     self.input_spec = InputSpec(ndim=self.rank + 2)
     self.spectral_parametrization = spectral_parametrization
     self.seed = seed if seed is not None else np.random.randint(1, 1e6)
    def __init__(self,
                 filters,
                 kernel_size,
                 strides=1,
                 padding='valid',
                 data_format=None,
                 dilation_rate=1,
                 activation=None,
                 use_bias=True,
                 kernel_initializer='glorot_uniform',
                 bias_initializer='zeros',
                 kernel_regularizer=None,
                 bias_regularizer=None,
                 activity_regularizer=None,
                 kernel_constraint=None,
                 bias_constraint=None,
                 tied_to=None,
                 **kwargs):

        super().__init__(filters, kernel_size, **kwargs)
        self.bias_constraint = constraints.get(bias_constraint)
        self.supports_masking = True

        self.tied_to = tied_to
        self.filters = filters
        self.kernel_size = conv_utils.normalize_tuple(kernel_size, 2,
                                                      'kernel_size')
        self.strides = conv_utils.normalize_tuple(strides, 2, 'strides')
        self.padding = conv_utils.normalize_padding(padding)
        self.data_format = K.normalize_data_format(data_format)
        self.dilation_rate = conv_utils.normalize_tuple(
            dilation_rate, 2, 'dilation_rate')
        self.activation = activations.get(activation)
        self.use_bias = use_bias
        self.kernel_initializer = initializers.get(kernel_initializer)
        self.bias_initializer = initializers.get(bias_initializer)
        self.kernel_regularizer = regularizers.get(kernel_regularizer)
        self.bias_regularizer = regularizers.get(bias_regularizer)
        self.activity_regularizer = regularizers.get(activity_regularizer)
        self.kernel_constraint = constraints.get(kernel_constraint)
        self.bias_constraint = constraints.get(bias_constraint)
        self.input_spec = InputSpec(ndim=4)
Ejemplo n.º 8
0
 def __init__(self,
              rank,
              filters,
              kernel_size,
              strides=1,
              padding='valid',
              data_format=None,
              dilation_rate=1,
              activation=None,
              use_bias=True,
              kernel_initializer='glorot_uniform',
              bias_initializer='zeros',
              kernel_regularizer=None,
              bias_regularizer=None,
              activity_regularizer=None,
              kernel_constraint=None,
              bias_constraint=None,
              Masked=False,
              kernel_mask_val=None,
              **kwargs):
     super(MaskedConv, self).__init__(**kwargs)
     self.rank = rank
     self.filters = filters
     self.kernel_size = conv_utils.normalize_tuple(kernel_size, rank,
                                                   'kernel_size')
     self.strides = conv_utils.normalize_tuple(strides, rank, 'strides')
     self.padding = conv_utils.normalize_padding(padding)
     self.data_format = K.normalize_data_format(data_format)
     self.dilation_rate = conv_utils.normalize_tuple(
         dilation_rate, rank, 'dilation_rate')
     self.activation = activations.get(activation)
     self.use_bias = use_bias
     self.kernel_initializer = initializers.get(kernel_initializer)
     self.bias_initializer = initializers.get(bias_initializer)
     self.kernel_regularizer = regularizers.get(kernel_regularizer)
     self.bias_regularizer = regularizers.get(bias_regularizer)
     self.activity_regularizer = regularizers.get(activity_regularizer)
     self.kernel_constraint = constraints.get(kernel_constraint)
     self.bias_constraint = constraints.get(bias_constraint)
     self.input_spec = InputSpec(ndim=self.rank + 2)
     self.Masked = Masked
     self.kernel_mask_val = kernel_mask_val
Ejemplo n.º 9
0
    def __init__(self, filters,
                 kernel_size,
                 strides=(1, 1),
                 padding='valid',
                 group=1,
                 data_format=None,
                 dilation_rate=(1, 1),
                 activation=None,
                 use_bias=True,
                 kernel_initializer='glorot_uniform',
                 bias_initializer='zeros',
                 kernel_regularizer=None,
                 bias_regularizer=None,
                 activity_regularizer=None,
                 kernel_constraint=None,
                 bias_constraint=None,
                 **kwargs):

        super(GroupConv2D, self).__init__(
            filters=filters,
            kernel_size=kernel_size,
            strides=strides,
            padding=padding,
            data_format=data_format,
            dilation_rate=dilation_rate,
            activation=activation,
            use_bias=use_bias,
            kernel_initializer=kernel_initializer,
            bias_initializer=bias_initializer,
            kernel_regularizer=kernel_regularizer,
            bias_regularizer=bias_regularizer,
            activity_regularizer=activity_regularizer,
            kernel_constraint=kernel_constraint,
            bias_constraint=bias_constraint,
            **kwargs)

        self.kernel_size = conv_utils.normalize_tuple(kernel_size, 2, 'kernel_size')
        self.strides = conv_utils.normalize_tuple(strides, 2, 'strides')
        self.padding = conv_utils.normalize_padding(padding)
        self.dilation_rate = conv_utils.normalize_tuple(dilation_rate, 2, 'dilation_rate')
        self.channel_axis = None
        self.group = group
Ejemplo n.º 10
0
 def __init__(self,
              filters,
              kernel_size,
              strides=1,
              padding='valid',
              dilation_rate=1,
              activation=None,
              use_bias=True,
              kernel_initializer='glorot_uniform',
              bias_initializer='zeros',
              kernel_regularizer=None,
              bias_regularizer=None,
              activity_regularizer=None,
              kernel_constraint=None,
              bias_constraint=None,
              function=None,
              arguments=None,
              normalized_position=True,
              **kwargs):
     super(SemiConv2D, self).__init__(**kwargs)
     self.rank = 2
     self.filters = filters
     self.kernel_size = conv_utils.normalize_tuple(kernel_size, self.rank,
                                                   'kernel_size')
     self.strides = conv_utils.normalize_tuple(strides, self.rank,
                                               'strides')
     self.padding = conv_utils.normalize_padding(padding)
     self.dilation_rate = conv_utils.normalize_tuple(
         dilation_rate, self.rank, 'dilation_rate')
     self.activation = activations.get(activation)
     self.use_bias = use_bias
     self.kernel_initializer = initializers.get(kernel_initializer)
     self.bias_initializer = initializers.get(bias_initializer)
     self.kernel_regularizer = regularizers.get(kernel_regularizer)
     self.bias_regularizer = regularizers.get(bias_regularizer)
     self.activity_regularizer = regularizers.get(activity_regularizer)
     self.kernel_constraint = constraints.get(kernel_constraint)
     self.bias_constraint = constraints.get(bias_constraint)
     self.input_spec = InputSpec(ndim=self.rank + 2)
     self.function = function
     self.arguments = arguments if arguments else {}
     self.normalized_position = normalized_position
Ejemplo n.º 11
0
 def __init__(self,
              filters,
              kernel_size,
              strides=(1, 1),
              padding='valid',
              data_format=None,
              dilation_rate=1,
              activation=None,
              use_bias=True,
              kernel_initializer='glorot_uniform',
              bias_initializer='zeros',
              kernel_regularizer=None,
              bias_regularizer=None,
              activity_regularizer=None,
              kernel_constraint=None,
              bias_constraint=None,
              template_tensor=None,
              clusterid=None,
              **kwargs):
     super(ModifiedConv2D, self).__init__(**kwargs)
     self.rank = 2
     self.filters = filters
     self.kernel_size = conv_utils.normalize_tuple(kernel_size, 2,
                                                   'kernel_size')
     self.strides = conv_utils.normalize_tuple(strides, 2, 'strides')
     self.padding = conv_utils.normalize_padding(padding)
     self.data_format = conv_utils.normalize_data_format(data_format)
     self.dilation_rate = conv_utils.normalize_tuple(
         dilation_rate, 2, 'dilation_rate')
     self.activation = activations.get(activation)
     self.use_bias = use_bias
     self.kernel_initializer = initializers.get(kernel_initializer)
     self.bias_initializer = initializers.get(bias_initializer)
     self.kernel_regularizer = regularizers.get(kernel_regularizer)
     self.bias_regularizer = regularizers.get(bias_regularizer)
     self.activity_regularizer = regularizers.get(activity_regularizer)
     self.kernel_constraint = constraints.get(kernel_constraint)
     self.bias_constraint = constraints.get(bias_constraint)
     self.input_spec = InputSpec(ndim=self.rank + 2)
     self.template_tensor = template_tensor
     self.clusterid = clusterid
Ejemplo n.º 12
0
 def __init__(self,
              filters,
              kernel_size,
              strides=1,
              padding='valid',
              data_format=None,
              dilation_rate=1,
              activation=None,
              use_bias=True,
              kernel_initializer='glorot_uniform',
              bias_initializer='zeros',
              kernel_regularizer=None,
              bias_regularizer=None,
              activity_regularizer=None,
              kernel_constraint=None,
              bias_constraint=None,
              num_bits=8,
              **kwargs):
     super(QuantizedConv2D, self).__init__(**kwargs)
     self.rank = 2
     self.filters = filters
     self.kernel_size = conv_utils.normalize_tuple(kernel_size, self.rank,
                                                   'kernel_size')
     self.strides = conv_utils.normalize_tuple(strides, self.rank,
                                               'strides')
     self.padding = conv_utils.normalize_padding(padding)
     self.data_format = K.normalize_data_format(data_format)
     self.dilation_rate = conv_utils.normalize_tuple(
         dilation_rate, self.rank, 'dilation_rate')
     self.activation = activations.get(activation)
     self.use_bias = use_bias
     self.kernel_initializer = initializers.get(kernel_initializer)
     self.bias_initializer = initializers.get(bias_initializer)
     self.kernel_regularizer = regularizers.get(kernel_regularizer)
     self.bias_regularizer = regularizers.get(bias_regularizer)
     self.activity_regularizer = regularizers.get(activity_regularizer)
     self.kernel_constraint = constraints.get(kernel_constraint)
     self.bias_constraint = constraints.get(bias_constraint)
     self.num_bits = num_bits
     self.quantization = _Quantization(num_bits=self.num_bits)
     self.input_spec = InputSpec(ndim=self.rank + 2)
Ejemplo n.º 13
0
 def __init__(self, rank,
              filters,
              kernel_size,
              time_distributed,
              strides=1,
              padding='valid',
              data_format=None,
              dilation_rate=1,
              activation=None,
              #dynamic_activation = 'softmax',
              use_bias=False,
              kernel_initializer='glorot_uniform',
              bias_initializer='zeros',
              kernel_regularizer=None,
              bias_regularizer=None,
              activity_regularizer=None,
              kernel_constraint=None,
              bias_constraint=None,
              **kwargs):
     super(adaptive_conv, self).__init__(**kwargs)
     self.rank = rank
     self.filters = filters
     self.kernel_size = conv_utils.normalize_tuple(kernel_size, rank,
                                                   'kernel_size')
     self.time_distributed = time_distributed                                              
     self.strides = conv_utils.normalize_tuple(strides, rank, 'strides')
     self.padding = conv_utils.normalize_padding(padding)
     self.data_format = K.normalize_data_format(data_format)
     self.dilation_rate = conv_utils.normalize_tuple(dilation_rate, rank,
                                                     'dilation_rate')
     self.activation = activations.get(activation)
     #self.dynamic_activation = activations.relu(alpha=0.2)
     self.use_bias = use_bias
     self.kernel_initializer = initializers.get(kernel_initializer)
     self.bias_initializer = initializers.get(bias_initializer)
     self.kernel_regularizer = regularizers.get(kernel_regularizer)
     self.bias_regularizer = regularizers.get(bias_regularizer)
     self.activity_regularizer = regularizers.get(activity_regularizer)
     self.kernel_constraint = constraints.get(kernel_constraint)
     self.bias_constraint = constraints.get(bias_constraint)
	def __init__(self,
				 filters,
				 kernel_size,
				 strides=1,
				 padding='valid',
				 data_format=None,
				 dilation_rate=1,
				 activation=None,
				 use_bias=True,
				 kernel_initializer='glorot_uniform',
				 bias_initializer='zeros',
				 kernel_regularizer=None,
				 bias_regularizer=None,
				 activity_regularizer=None,
				 kernel_constraint=None,
				 bias_constraint=None,
				 kl_lambda = 1e-6,
				 drop_prob = 0.20,
				 batch_size = 8,
				 **kwargs):
		super(Conv2D_wd, self).__init__(**kwargs)
		self.rank = 2
		self.filters = filters
		self.kernel_size = conv_utils.normalize_tuple(kernel_size, 2, 'kernel_size')
		self.strides = conv_utils.normalize_tuple(strides, 2, 'strides')
		self.padding = conv_utils.normalize_padding(padding)
		self.data_format = conv_utils.normalize_data_format(data_format)
		self.dilation_rate = conv_utils.normalize_tuple(dilation_rate, 2, 'dilation_rate')
		self.activation = activations.get(activation)
		self.use_bias = use_bias
		self.kernel_initializer = initializers.get(kernel_initializer)
		self.bias_initializer = initializers.get(bias_initializer)
		self.kernel_regularizer = regularizers.get(kernel_regularizer)
		self.bias_regularizer = regularizers.get(bias_regularizer)
		self.activity_regularizer = regularizers.get(activity_regularizer)
		self.kernel_constraint = constraints.get(kernel_constraint)
		self.bias_constraint = constraints.get(bias_constraint)
		self.kl_lambda = kl_lambda
		self.drop_prob = drop_prob
		self.batch_size = batch_size
Ejemplo n.º 15
0
 def __init__(self, filters,
              kernel_size,
              strides=1,
              padding='same',
              data_format=None,
              activation='tanh',
              kernel_initializer='glorot_uniform',
              bias_initializer='zeros',
              use_bias=True,
              ** kwargs):
     super(self_conv1d, self).__init__(**kwargs)
     self.rank = 1
     self.filters = filters
     self.data_format = conv_utils.normalize_data_format(data_format)
     self.kernel_size = conv_utils.normalize_tuple(kernel_size, self.rank, 'kernel_size')
     self.strides = conv_utils.normalize_tuple(strides, self.rank, 'strides')
     self.padding = conv_utils.normalize_padding(padding)
     self.activation = activations.get(activation)
     self.use_bias = use_bias
     self.supports_masking = True
     self.kernel_initializer = initializers.get(kernel_initializer)
     self.bias_initializer = initializers.get(bias_initializer)
Ejemplo n.º 16
0
 def __init__(self,
              offset_creator_class,
              weight_basis,
              filters,
              kernel_size,
              strides=(1, 1),
              padding='valid',
              data_format=None,
              activation=None,
              use_bias=True,
              kernel_initializer='glorot_uniform',
              bias_initializer='zeros',
              kernel_regularizer=None,
              bias_regularizer=None,
              activity_regularizer=None,
              kernel_constraint=None,
              bias_constraint=None,
              **kwargs):
     super(RProjLocallyConnected2D, self).__init__(offset_creator_class,
                                                   weight_basis, **kwargs)
     self.filters = filters
     self.kernel_size = conv_utils.normalize_tuple(kernel_size, 2,
                                                   'kernel_size')
     self.strides = conv_utils.normalize_tuple(strides, 2, 'strides')
     self.padding = conv_utils.normalize_padding(padding)
     if self.padding != 'valid':
         raise ValueError('Invalid border mode for LocallyConnected2D '
                          '(only "valid" is supported): ' + padding)
     self.data_format = conv_utils.normalize_data_format(data_format)
     self.activation = activations.get(activation)
     self.use_bias = use_bias
     self.kernel_initializer = initializers.get(kernel_initializer)
     self.bias_initializer = initializers.get(bias_initializer)
     self.kernel_regularizer = regularizers.get(kernel_regularizer)
     self.bias_regularizer = regularizers.get(bias_regularizer)
     self.activity_regularizer = regularizers.get(activity_regularizer)
     self.kernel_constraint = constraints.get(kernel_constraint)
     self.bias_constraint = constraints.get(bias_constraint)
     self.input_spec = InputSpec(ndim=4)
Ejemplo n.º 17
0
 def __init__(self,
              rank,
              filters,
              kernel_size,
              strides=1,
              padding='valid',
              data_format=None,
              dilation_rate=1,
              activation=None,
              use_bias=True,
              kernel_initializer='glorot_uniform',
              bias_initializer='zeros',
              kernel_regularizer=None,
              bias_regularizer=None,
              activity_regularizer=None,
              kernel_constraint=None,
              bias_constraint=None,
              output_merge=False,
              **kwargs):
     super().__init__(**kwargs)
     self.rank = rank
     self.filters = filters
     self.kernel_size = conv_utils.normalize_tuple((2, ) + kernel_size,
                                                   rank + 1, 'kernel_size')
     self.strides = conv_utils.normalize_tuple(strides, rank, 'strides')
     self.padding = conv_utils.normalize_padding(padding)
     self.data_format = K.normalize_data_format(data_format)
     self.dilation_rate = conv_utils.normalize_tuple(
         dilation_rate, rank, 'dilation_rate')
     self.activation = activations.get(activation)
     self.use_bias = use_bias
     self.kernel_initializer = initializers.get(kernel_initializer)
     self.bias_initializer = initializers.get(bias_initializer)
     self.kernel_regularizer = regularizers.get(kernel_regularizer)
     self.bias_regularizer = regularizers.get(bias_regularizer)
     self.activity_regularizer = regularizers.get(activity_regularizer)
     self.kernel_constraint = constraints.get(kernel_constraint)
     self.bias_constraint = constraints.get(bias_constraint)
     self.output_merge = output_merge
Ejemplo n.º 18
0
 def __init__(self,
              filters,
              kernel_size,
              strides=(1, 1),
              padding='valid',
              data_format='channels_last',
              dilation_rate=(1, 1),
              activation=None,
              use_bias=True,
              kernel_initializer='glorot_uniform',
              bias_initializer='zeros',
              kernel_regularizer=None,
              bias_regularizer=None,
              activity_regularizer=None,
              kernel_constraint=None,
              bias_constraint=None,
              **kwargs):
     # print(kwargs)
     super(pruned_Conv2D, self).__init__(**kwargs)
     self.rank = 2
     self.filters = filters
     self.kernel_size = conv_utils.normalize_tuple(kernel_size, self.rank,
                                                   'kernel_size')
     self.strides = conv_utils.normalize_tuple(strides, self.rank,
                                               'strides')
     self.padding = conv_utils.normalize_padding(padding)
     self.data_format = K.normalize_data_format(data_format)
     self.dilation_rate = conv_utils.normalize_tuple(
         dilation_rate, self.rank, 'dilation_rate')
     self.activation = activations.get(activation)
     self.use_bias = use_bias
     self.kernel_initializer = initializers.get(kernel_initializer)
     self.bias_initializer = initializers.get(bias_initializer)
     self.kernel_regularizer = regularizers.get(kernel_regularizer)
     self.bias_regularizer = regularizers.get(bias_regularizer)
     self.activity_regularizer = regularizers.get(activity_regularizer)
     self.kernel_constraint = constraints.get(kernel_constraint)
     self.bias_constraint = constraints.get(bias_constraint)
     self.input_spec = InputSpec(ndim=self.rank + 2)
Ejemplo n.º 19
0
 def __init__(self,
              pool_function,
              pool_size,
              strides,
              padding="valid",
              data_format=None,
              name=None,
              **kwargs):
     super().__init__(name=name, **kwargs)
     if data_format is None:
         data_format = backend.image_data_format()
     if strides is None:
         strides = pool_size
     self.pool_function = pool_function
     self.pool_size = conv_utils.normalize_tuple(pool_size, 2, "pool_size")
     self.strides = conv_utils.normalize_tuple(strides,
                                               2,
                                               "strides",
                                               allow_zero=True)
     self.padding = conv_utils.normalize_padding(padding)
     self.data_format = conv_utils.normalize_data_format(data_format)
     self.input_spec = InputSpec(ndim=4)
    def __init__(self,
                 n_replicas=1,
                 strides=(1, 1),
                 padding='valid',
                 dilation_rate=(1, 1),
                 activation='relu',
                 components=None,
                 **kwargs):
        super(CosineSimilarity2D, self).__init__(**kwargs)
        self.n_replicas = n_replicas
        self.rank = 2
        self.strides = conv_utils.normalize_tuple(strides, self.rank,
                                                  'strides')
        self.padding = conv_utils.normalize_padding(padding)
        self.dilation_rate = conv_utils.normalize_tuple(
            dilation_rate, self.rank, 'dilation_rate')
        self.components = components
        self.activation = activations.get(activation)

        if K.image_data_format() != 'channels_last':
            raise ValueError("The layer requires `K.image_data_format()` to "
                             "be 'channels_last'.")
Ejemplo n.º 21
0
 def __init__(self,
              filters,
              kernel_size,
              strides=(1, 1),
              padding='valid',
              data_format=None,
              dilation_rate=(1, 1),
              activation=None,
              use_bias=True,
              kernel_initializer='he_normal',
              bias_initializer='zeros',
              kernel_regularizer=None,
              bias_regularizer=None,
              activity_regularizer=None,
              kernel_constraint=None,
              bias_constraint=None,
              rank=2,
              **kwargs):
     super(GroupConv2D_Backend, self).__init__(**kwargs)
     self.rank = rank
     self.filters = filters
     self.kernel_size = conv_utils.normalize_tuple(kernel_size, rank,
                                                   'kernel_size')
     self.strides = conv_utils.normalize_tuple(strides, rank, 'strides')
     self.padding = conv_utils.normalize_padding(padding)
     self.data_format = K.normalize_data_format(data_format)
     self.dilation_rate = conv_utils.normalize_tuple(
         dilation_rate, rank, 'dilation_rate')
     self.activation = activations.get(activation)
     self.use_bias = use_bias
     self.kernel_initializer = initializers.get(kernel_initializer)
     self.bias_initializer = initializers.get(bias_initializer)
     self.kernel_regularizer = regularizers.get(kernel_regularizer)
     self.bias_regularizer = regularizers.get(bias_regularizer)
     self.activity_regularizer = regularizers.get(activity_regularizer)
     self.kernel_constraint = constraints.get(kernel_constraint)
     self.bias_constraint = constraints.get(bias_constraint)
     self.input_spec = InputSpec(ndim=self.rank + 2)
Ejemplo n.º 22
0
    def __init__(self,
                 rank,
                 filters,
                 kernel_size,
                 strides=1,
                 padding='valid',
                 data_format=None,
                 dilation_rate=1,
                 activation=None,
                 use_bias=False,
                 kernel_regularizer=None,
                 **kwargs):
        super(GaussScaler, self).__init__(**kwargs)
        #def __init__(self, num_filters, kernel_size, incoming_channels=1, **kwargs):
        self.rank = rank
        self.filters = filters
        self.kernel_size = conv_utils.normalize_tuple(kernel_size, rank,
                                                      'kernel_size')
        self.strides = conv_utils.normalize_tuple(strides, rank, 'strides')
        self.padding = conv_utils.normalize_padding(padding)
        self.data_format = conv_utils.normalize_data_format(data_format)
        self.dilation_rate = conv_utils.normalize_tuple(
            dilation_rate, rank, 'dilation_rate')
        self.activation = activations.get(activation)
        self.use_bias = use_bias
        self.kernel_regularizer = regularizers.get(kernel_regularizer)
        self.input_spec = InputSpec(ndim=self.rank + 2)

        #self.input_shape = input_shape
        if 'input_shape' not in kwargs and 'input_dim' in kwargs:
            kwargs['input_shape'] = (kwargs.pop('input_dim'))
        print(kwargs)
        self.kernel_size = kernel_size

        self.num_filters = filters
        #self.incoming_channels = incoming_channels

        super(GaussScaler, self).__init__(**kwargs)
Ejemplo n.º 23
0
 def __init__(self,
              kernel_width=3,
              sigma=1,
              filters=1,
              strides=(1, 1),
              padding='valid',
              data_format=None,
              kernel_initializer='uniform',
              kernel_regularizer=None,
              kernel_constraint=None,
              use_bias=True,
              bias_initializer='zeros',
              bias_regularizer=None,
              bias_constraint=None,
              activity_regularizer=None,
              activation=None,
              **kwargs):
     #  self._output_dim = output_dim
     self._kernel_width = kernel_width
     self.kernel_size = (kernel_width, kernel_width)
     self.strides = conv_utils.normalize_tuple(strides, 2, 'strides')
     self.padding = conv_utils.normalize_padding(padding)
     if self.padding != 'valid':
         raise ValueError('Invalid border mode for LocallyConnected2D '
                          '(only "valid" is supported): ' + padding)
     self.activation = activations.get(activation)
     self._gaussian = _gaussian(kernel_width, sigma)
     self.filters = filters
     self.data_format = K.normalize_data_format(data_format)
     self.kernel_initializer = initializers.get(kernel_initializer)
     self.kernel_regularizer = regularizers.get(kernel_regularizer)
     self.kernel_constraint = constraints.get(kernel_constraint)
     self.use_bias = use_bias
     self.bias_initializer = initializers.get(bias_initializer)
     self.bias_regularizer = regularizers.get(bias_regularizer)
     self.bias_constraint = constraints.get(bias_constraint)
     self.activity_regularizer = regularizers.get(activity_regularizer)
     super(Focus, self).__init__(**kwargs)
Ejemplo n.º 24
0
 def __init__(self,
              pool_size=(2, 2),
              strides=None,
              padding='same',
              data_format=None,
              **kwargs):
     super(UnPooling2D, self).__init__(**kwargs)
     data_format = conv_utils.normalize_data_format(data_format)
     if strides is None:
         strides = pool_size
     self.pool_size = conv_utils.normalize_tuple(pool_size, 2, 'pool_size')
     self.strides = conv_utils.normalize_tuple(strides, 2, 'strides')
     self.padding = conv_utils.normalize_padding(padding)
     self.data_format = conv_utils.normalize_data_format(data_format)
     self.input_spec = [InputSpec(ndim=4), InputSpec(ndim=4)]
     self.expected_out_shape = None
     self.size = None
     if padding is not 'same':
         print('This Layer is implemented only\
         for padding="same".')
     if pool_size != strides:
         print('pool_size:', pool_size, 'strides:', strides)
         raise ValueError('Keep strides and pool_size equal.')
Ejemplo n.º 25
0
 def __init__(self,
              rank,
              patch_size,
              strides=1,
              padding='valid',
              data_format=None,
              dilation_rate=1,
              activation=None,
              use_bias=True,
              kernel_initializer='glorot_uniform',
              activity_regularizer=None,
              kernel_constraint=None,
              **kwargs):
     super(PatchExtracter, self).__init__(**kwargs)
     self.rank = rank
     self.patch_size = conv_utils.normalize_tuple(patch_size, rank,
                                                  'kernel_size')
     self.strides = conv_utils.normalize_tuple(strides, rank, 'strides')
     self.padding = conv_utils.normalize_padding(padding)
     self.data_format = conv_utils.normalize_data_format(data_format)
     self.dilation_rate = conv_utils.normalize_tuple(
         dilation_rate, rank, 'dilation_rate')
     self.input_spec = InputSpec(ndim=self.rank + 2)
Ejemplo n.º 26
0
 def __init__(self, fwh_projector, rank,
              filters,
              kernel_size,
              strides=1,
              padding='valid',
              data_format=None,
              dilation_rate=1,
              activation=None,
              use_bias=True,
              kernel_initializer='glorot_uniform',
              bias_initializer='zeros',
              kernel_regularizer=None,
              bias_regularizer=None,
              activity_regularizer=None,
              kernel_constraint=None,
              bias_constraint=None,
              **kwargs):
     # embed()
     super(_RProjFWHConv, self).__init__(**kwargs)
     self.fwh_projector = fwh_projector
     self.rank = rank
     self.filters = filters
     self.kernel_size = conv_utils.normalize_tuple(kernel_size, rank, 'kernel_size')
     self.strides = conv_utils.normalize_tuple(strides, rank, 'strides')
     self.padding = conv_utils.normalize_padding(padding)
     self.data_format = conv_utils.normalize_data_format(data_format)
     self.dilation_rate = conv_utils.normalize_tuple(dilation_rate, rank, 'dilation_rate')
     self.activation = activations.get(activation)
     self.use_bias = use_bias
     self.kernel_initializer = initializers.get(kernel_initializer)
     self.bias_initializer = initializers.get(bias_initializer)
     self.kernel_regularizer = regularizers.get(kernel_regularizer)
     self.bias_regularizer = regularizers.get(bias_regularizer)
     self.activity_regularizer = regularizers.get(activity_regularizer)
     self.kernel_constraint = constraints.get(kernel_constraint)
     self.bias_constraint = constraints.get(bias_constraint)
     self.input_spec = InputSpec(ndim=self.rank + 2)
Ejemplo n.º 27
0
    def __init__(self,
                 pool_size=2,
                 strides=None,
                 padding='valid',
                 default_value=0.0,
                 terminate_mask=False,
                 **kwargs):

        assert padding in ['valid',
                           'same'], "Invalid value for `padding`: " + padding

        super().__init__(**kwargs)

        if strides is None:
            strides = pool_size
        self.pool_size = conv_utils.normalize_tuple(pool_size, 1, 'pool_size')
        self.strides = conv_utils.normalize_tuple(strides, 1, 'strides')
        self.padding = conv_utils.normalize_padding(padding)

        self.default_value = default_value
        self.terminate_mask = terminate_mask

        self.input_spec = None  # removed ndim restriction: InputSpec(ndim=3)
        return
Ejemplo n.º 28
0
    def __init__(self,
                 filters,
                 kernel_size,
                 strides=1,
                 padding='valid',
                 data_format=None,
                 dilation_rate=1,
                 rank=2,
                 **kwargs):

        super(GradientConv2D, self).__init__(**kwargs)
        self.filters = filters
        self.kernel_size = conv_utils.normalize_tuple(kernel_size, rank,
                                                      'kernel_size')
        self.strides = conv_utils.normalize_tuple(strides, rank, 'strides')
        self.data_format = conv_utils.normalize_data_format(data_format)
        self.padding = conv_utils.normalize_padding(padding)
        self.dilation_rate = conv_utils.normalize_tuple(
            dilation_rate, rank, 'dilation_rate')
        self.sx = np.array([[-1, 0, 1], [-2, 0, 2], [-1, 0, 1]])

        # self.sx = K.constant(sx, shape=(3, 3))

        self.sy = np.array([[1, 2, 1], [0, 0, 0], [-1, -2, -1]])
Ejemplo n.º 29
0
def test_invalid_padding():
    with pytest.raises(ValueError):
        conv_utils.normalize_padding('diagonal')
Ejemplo n.º 30
0
    def __init__(self,
                 num_filters=1,
                 kernel_size=(1, 1),
                 bin_sizes=[1, 2, 3, 6],
                 pool_mode='avg',
                 padding='valid',
                 activation=None,
                 use_bias=True,
                 kernel_initializer='glorot_uniform',
                 bias_initializer='zeros',
                 kernel_regularizer=None,
                 bias_regularizer=None,
                 activity_regularizer=None,
                 kernel_constraint=None,
                 bias_constraint=None,
                 **kwargs):
        """
        Initialize a new Pyramid Pooling Module.

        Args:
            num_filters: the number of filters per convolutional unit
            bin_sizes: sizes for pooling bins
            pool_mode: pooling mode to use
            padding: One of `"valid"` or `"same"` (case-insensitive).
            activation: Activation function to use
            use_bias: whether layer uses a bias vector
            kernel_initializer: Initializer for kernel weights
            bias_initializer: Initializer for bias vector
            kernel_regularizer: Regularizer function applied to kernel weights
            bias_regularizer: Regularizer function applied to bias vector
            activity_regularizer: Regularizer function applied to output
            kernel_constraint: Constraint function applied to kernel
            bias_constraint: Constraint function applied to bias vector
            kwargs: keyword arguments for Layer super constructor

        Returns:
            None

        """
        if padding != 'same' and any(x > 1 for x in kernel_size):
            raise ValueError(
                "padding should be 'same' if the kernel size is larger than (1, 1)"
            )
        # setup instance variables
        self.input_spec = InputSpec(ndim=4)
        self.num_filters = num_filters
        self.kernel_size = kernel_size
        self.bin_sizes = bin_sizes
        self.pool_mode = pool_mode
        self.padding = conv_utils.normalize_padding(padding)
        self.data_format = 'channels_last'
        self.activation = activations.get(activation)
        self.use_bias = use_bias
        self.kernel_initializer = initializers.get(kernel_initializer)
        self.bias_initializer = initializers.get(bias_initializer)
        self.kernel_regularizer = regularizers.get(kernel_regularizer)
        self.bias_regularizer = regularizers.get(bias_regularizer)
        self.activity_regularizer = regularizers.get(activity_regularizer)
        self.kernel_constraint = constraints.get(kernel_constraint)
        self.bias_constraint = constraints.get(bias_constraint)
        # initialize the kernels and biases
        self.kernels = None
        self.biases = None
        # call the super constructor
        super(PyramidPoolingModule, self).__init__(**kwargs)
Ejemplo n.º 31
0
    def __init__(self, filters,
                 kernel_size,
                 retention_ratio=None, 
                 learn_retention_ratio=False, 
                 strides=(1, 1),
                 padding='valid',
                 data_format=None,
                 dilation_rate=(1, 1),
                 activation='tanh',
                 recurrent_activation='hard_sigmoid',
                 use_bias=True,
                 kernel_initializer='glorot_uniform',
                 recurrent_initializer='orthogonal',
                 bias_initializer='zeros',
                 unit_forget_bias=True,
                 kernel_regularizer=None,
                 recurrent_regularizer=None,
                 bias_regularizer=None,
                 kernel_constraint=None,
                 recurrent_constraint=None,
                 bias_constraint=None,
                 dropout=0.,
                 recurrent_dropout=0.,
                 **kwargs):
        super(ConvlpRNN2DCell, self).__init__(**kwargs)
        self.filters = filters
        self.kernel_size = conv_utils.normalize_tuple(kernel_size, 2, 'kernel_size')
        self.strides = conv_utils.normalize_tuple(strides, 2, 'strides')
        self.padding = conv_utils.normalize_padding(padding)
        self.data_format = conv_utils.normalize_data_format(data_format)
        self.dilation_rate = conv_utils.normalize_tuple(dilation_rate, 2, 'dilation_rate')
        self.activation = activations.get(activation)
        self.recurrent_activation = activations.get(recurrent_activation)
        self.use_bias = use_bias

        self.kernel_initializer = initializers.get(kernel_initializer)
        self.recurrent_initializer = initializers.get(recurrent_initializer)
        self.bias_initializer = initializers.get(bias_initializer)
        self.unit_forget_bias = unit_forget_bias

        self.kernel_regularizer = regularizers.get(kernel_regularizer)
        self.recurrent_regularizer = regularizers.get(recurrent_regularizer)
        self.bias_regularizer = regularizers.get(bias_regularizer)

        self.kernel_constraint = constraints.get(kernel_constraint)
        self.recurrent_constraint = constraints.get(recurrent_constraint)
        self.bias_constraint = constraints.get(bias_constraint)

        if K.backend() == 'theano' and (dropout or recurrent_dropout):
            warnings.warn(
                'RNN dropout is no longer supported with the Theano backend '
                'due to technical limitations. '
                'You can either set `dropout` and `recurrent_dropout` to 0, '
                'or use the TensorFlow backend.')
            dropout = 0.
            recurrent_dropout = 0.
        self.dropout = min(1., max(0., dropout))
        self.recurrent_dropout = min(1., max(0., recurrent_dropout))
        self.state_size = (self.filters, self.filters)
        self._dropout_mask = None
        self._recurrent_dropout_mask = None
        self._learn_retention_ratio = learn_retention_ratio
        self._num_units = filters
        self.set_retention_ratio = retention_ratio
    def __init__(
            self,
            rank,
            filters,
            kernel_size,
            strides=1,
            padding='valid',
            data_format=None,
            dilation_rate=1,
            activation=None,  # key of activation
            use_bias=True,
            normalize_weight=False,
            kernel_initializer='he_complex',
            bias_initializer='zeros',
            gamma_diag_initializer=sqrt_init,
            gamma_off_initializer='zeros',
            kernel_regularizer=None,
            bias_regularizer=None,
            gamma_diag_regularizer=None,
            gamma_off_regularizer=None,
            activity_regularizer=None,
            kernel_constraint=None,
            bias_constraint=None,
            gamma_diag_constraint=None,
            gamma_off_constraint=None,
            init_criterion='he',
            seed=None,
            spectral_parametrization=False,
            transposed=False,
            epsilon=1e-7,
            **kwargs):
        super(_ComplexConv, self).__init__(**kwargs)
        self.rank = rank
        self.filters = filters
        self.kernel_size = conv_utils.normalize_tuple(kernel_size, rank,
                                                      'kernel_size')
        self.strides = conv_utils.normalize_tuple(strides, rank, 'strides')
        self.padding = conv_utils.normalize_padding(padding)
        self.data_format = normalize_data_format(data_format)
        self.dilation_rate = conv_utils.normalize_tuple(
            dilation_rate, rank, 'dilation_rate')
        self.activation = activation
        self.use_bias = use_bias
        self.normalize_weight = normalize_weight
        self.init_criterion = init_criterion
        self.spectral_parametrization = spectral_parametrization
        self.transposed = transposed
        self.epsilon = epsilon
        self.kernel_initializer = sanitizedInitGet(kernel_initializer)
        self.bias_initializer = sanitizedInitGet(bias_initializer)
        self.gamma_diag_initializer = sanitizedInitGet(gamma_diag_initializer)
        self.gamma_off_initializer = sanitizedInitGet(gamma_off_initializer)
        self.kernel_regularizer = regularizers.get(kernel_regularizer)
        self.bias_regularizer = regularizers.get(bias_regularizer)
        self.gamma_diag_regularizer = regularizers.get(gamma_diag_regularizer)
        self.gamma_off_regularizer = regularizers.get(gamma_off_regularizer)
        self.activity_regularizer = regularizers.get(activity_regularizer)
        self.kernel_constraint = constraints.get(kernel_constraint)
        self.bias_constraint = constraints.get(bias_constraint)
        self.gamma_diag_constraint = constraints.get(gamma_diag_constraint)
        self.gamma_off_constraint = constraints.get(gamma_off_constraint)
        self.seed = seed if seed is not None else np.random.randint(1, 1e6)
        self.input_spec = InputSpec(ndim=self.rank + 2)

        # The following are initialized later
        self.kernel_shape = None
        self.kernel = None
        self.gamma_rr = None
        self.gamma_ii = None
        self.gamma_ri = None
        self.bias = None
Ejemplo n.º 33
0
    def __init__(
        self,
        rank,
        filters,
        kernel_size,
        strides=1,
        padding="valid",
        data_format=None,
        dilation_rate=1,
        groups=1,
        activation=None,
        use_bias=True,
        kernel_initializer="glorot_uniform",
        bias_initializer="zeros",
        kernel_regularizer=None,
        bias_regularizer=None,
        activity_regularizer=None,
        kernel_constraint=None,
        bias_constraint=None,
        trainable=True,
        name=None,
        conv_op=None,
        **kwargs,
    ):
        super().__init__(
            trainable=trainable,
            name=name,
            activity_regularizer=regularizers.get(activity_regularizer),
            **kwargs,
        )
        self.rank = rank

        if isinstance(filters, float):
            filters = int(filters)
        if filters is not None and filters <= 0:
            raise ValueError("Invalid value for argument `filters`. "
                             "Expected a strictly positive value. "
                             f"Received filters={filters}.")
        self.filters = filters
        self.groups = groups or 1
        self.kernel_size = conv_utils.normalize_tuple(kernel_size, rank,
                                                      "kernel_size")
        self.strides = conv_utils.normalize_tuple(strides,
                                                  rank,
                                                  "strides",
                                                  allow_zero=True)
        self.padding = conv_utils.normalize_padding(padding)
        self.data_format = conv_utils.normalize_data_format(data_format)
        self.dilation_rate = conv_utils.normalize_tuple(
            dilation_rate, rank, "dilation_rate")

        self.activation = activations.get(activation)
        self.use_bias = use_bias

        self.kernel_initializer = initializers.get(kernel_initializer)
        self.bias_initializer = initializers.get(bias_initializer)
        self.kernel_regularizer = regularizers.get(kernel_regularizer)
        self.bias_regularizer = regularizers.get(bias_regularizer)
        self.kernel_constraint = constraints.get(kernel_constraint)
        self.bias_constraint = constraints.get(bias_constraint)
        self.input_spec = InputSpec(min_ndim=self.rank + 2)

        self._validate_init()
        self._is_causal = self.padding == "causal"
        self._channels_first = self.data_format == "channels_first"
        self._tf_data_format = conv_utils.convert_data_format(
            self.data_format, self.rank + 2)
Ejemplo n.º 34
0
def test_invalid_padding():
    with pytest.raises(ValueError):
        conv_utils.normalize_padding('diagonal')