Ejemplo n.º 1
0
def test_h5dict_attrs(h5_path='test.h5'):
    # test both HDF5 and dict implementations
    paths = [h5_path, dict()]

    for path in paths:
        f = h5dict(path, mode='w')

        # str
        f['x'] = 'abcd'

        # list<bytes>
        f['y'] = [b'efg', b'hij', b'klmn']

        # ndarray
        array = np.random.random((3, 4, 5))
        f['z'] = array

        f.close()

        f = h5dict(path, mode='r')

        assert f['x'] == 'abcd'
        assert f['y'] == [b'efg', b'hij', b'klmn']
        assert_allclose(f['z'], array)

        f.close()
Ejemplo n.º 2
0
def test_h5dict_attrs():
    _, h5_path = tempfile.mkstemp('.h5')

    # test both HDF5 and dict implementations
    paths = [h5_path, dict()]

    for path in paths:
        f = h5dict(path, mode='w')

        # str
        f['x'] = 'abcd'

        # list<bytes>
        f['y'] = [b'efg', b'hij', b'klmn']

        # ndarray
        array = np.random.random((4, 5, 512))
        f['z'] = array

        f.close()

        f = h5dict(path, mode='r')

        assert f['x'] == 'abcd'
        assert f['y'] == [b'efg', b'hij', b'klmn']
        assert_allclose(f['z'], array)

        f.close()
    os.remove(h5_path)
Ejemplo n.º 3
0
def test_h5dict_attrs():
    _, h5_path = tempfile.mkstemp('.h5')

    # test both HDF5 and dict implementations
    paths = [h5_path, dict()]

    for path in paths:
        f = h5dict(path, mode='w')

        # str
        f['x'] = 'abcd'

        # list<bytes>
        f['y'] = [b'efg', b'hij', b'klmn']

        # ndarray
        array = np.random.random((4, 5, 512))
        f['z'] = array

        f.close()

        f = h5dict(path, mode='r')

        assert f['x'] == 'abcd'
        assert f['y'] == [b'efg', b'hij', b'klmn']
        assert_allclose(f['z'], array)

        f.close()
    os.remove(h5_path)
Ejemplo n.º 4
0
def test_h5dict_groups():
    _, h5_path = tempfile.mkstemp('.h5')

    # test both HDF5 and dict implementations
    paths = [h5_path, dict()]

    for path in paths:
        f = h5dict(path, mode='w')

        group1 = f['group1']
        group2 = group1['group2']

        group2['x'] = 'abcd'

        group3 = group2['group3']
        group3['y'] = [b'efg', b'hij', b'klmn']

        group4 = group3['group4']
        array = np.random.random((4, 5, 512))
        group4['z'] = array

        f.close()

        f = h5dict(path, mode='r')

        assert 'group1' in f
        group1 = f['group1']

        assert 'group2' in group1
        group2 = group1['group2']
        assert group2['x'] == 'abcd'

        assert 'group3' in group2
        group3 = group2['group3']
        assert group3['y'] == [b'efg', b'hij', b'klmn']

        assert 'group4' in group3
        group4 = group3['group4']
        assert_allclose(group4['z'], array)

        f.close()
    os.remove(h5_path)
Ejemplo n.º 5
0
def test_h5dict_groups():
    _, h5_path = tempfile.mkstemp('.h5')

    # test both HDF5 and dict implementations
    paths = [h5_path, dict()]

    for path in paths:
        f = h5dict(path, mode='w')

        group1 = f['group1']
        group2 = group1['group2']

        group2['x'] = 'abcd'

        group3 = group2['group3']
        group3['y'] = [b'efg', b'hij', b'klmn']

        group4 = group3['group4']
        array = np.random.random((4, 5, 512))
        group4['z'] = array

        f.close()

        f = h5dict(path, mode='r')

        assert 'group1' in f
        group1 = f['group1']

        assert 'group2' in group1
        group2 = group1['group2']
        assert group2['x'] == 'abcd'

        assert 'group3' in group2
        group3 = group2['group3']
        assert group3['y'] == [b'efg', b'hij', b'klmn']

        assert 'group4' in group3
        group4 = group3['group4']
        assert_allclose(group4['z'], array)

        f.close()
    os.remove(h5_path)
Ejemplo n.º 6
0
def save_model(model, filepath, overwrite=True, include_optimizer=True):
    """Save a model to a HDF5 file.

    Note: Please also see
    [How can I install HDF5 or h5py to save my models in Keras?](
        /getting-started/faq/
        #how-can-i-install-HDF5-or-h5py-to-save-my-models-in-Keras)
    in the FAQ for instructions on how to install `h5py`.

    The saved model contains:
        - the model's configuration (topology)
        - the model's weights
        - the model's optimizer's state (if any)

    Thus the saved model can be reinstantiated in
    the exact same state, without any of the code
    used for model definition or training.

    # Arguments
        model: Keras model instance to be saved.
        filepath: one of the following:
            - string, path where to save the model, or
            - h5py.File or h5py.Group object where to save the model
        overwrite: Whether we should overwrite any existing
            model at the target location, or instead
            ask the user with a manual prompt.
        include_optimizer: If True, save optimizer's state together.

    # Raises
        ImportError: if h5py is not available.
    """
    if h5py is None:
        raise ImportError('`save_model` requires h5py.')

    if not isinstance(filepath, h5py.Group):
        # If file exists and should not be overwritten.
        if not overwrite and os.path.isfile(filepath):
            proceed = ask_to_proceed_with_overwrite(filepath)
            if not proceed:
                return
        opened_new_file = True
    else:
        opened_new_file = False

    f = h5dict(filepath, mode='w')

    try:
        _serialize_model(model, f, include_optimizer)
    finally:
        if opened_new_file:
            f.close()
    def _load_model(filepath, model_class):
        """Load a model, its state and its hyperparameters from file.

        Args:
            filepath (TYPE): Path to model to load
        """
        from keras.utils.io_utils import h5dict
        from keras.engine.saving import load_weights_from_hdf5_group_by_name  #, _deserialize_model
        from json import loads
        from keras.models import model_from_json

        f = h5dict(filepath, mode='r')
        parameters = loads(str(f['parameters']))
        model = model_class(**parameters)
        model._maybe_create_model()
        model.model_.load_weights(filepath, by_name=True)
        f.close()
        return model
Ejemplo n.º 8
0
def load_model(filepath, custom_objects=None, compile=True):
    """Loads a model saved via `save_model`.

    # Arguments
        filepath: one of the following:
            - string, path to the saved model, or
            - h5py.File or h5py.Group object from which to load the model
        custom_objects: Optional dictionary mapping names
            (strings) to custom classes or functions to be
            considered during deserialization.
        compile: Boolean, whether to compile the model
            after loading.

    # Returns
        A Keras model instance. If an optimizer was found
        as part of the saved model, the model is already
        compiled. Otherwise, the model is uncompiled and
        a warning will be displayed. When `compile` is set
        to False, the compilation is omitted without any
        warning.

    # Raises
        ImportError: if h5py is not available.
        ValueError: In case of an invalid savefile.
    """
    if h5py is None:
        raise ImportError('`load_model` requires h5py.')
    model = None
    opened_new_file = not isinstance(filepath, h5py.Group)
    f = h5dict(filepath, 'r')
    try:
        model = _deserialize_model(f, custom_objects, compile)
    finally:
        if opened_new_file:
            f.close()
    return model
Ejemplo n.º 9
0
def unpickle_model(state):
    f = h5dict(state, mode='r')
    return _deserialize_model(f)
Ejemplo n.º 10
0
def pickle_model(model):
    d = {}
    f = h5dict(d)
    _serialize_model(model, f)
    return d