Ejemplo n.º 1
0
    def call(self, inputs, **kwargs):
        source, target = inputs
        source_shape = K.shape(source)
        target_shape = K.shape(target)

        if K.image_data_format() == 'channels_last':
            source_height, source_width = source_shape[1:3]
            target_height, target_width = target_shape[1:3]
        else:
            source_height, source_width = source_shape[2:4]
            target_height, target_width = target_shape[2:4]

        return K.resize_images(source, target_height / source_height,
                               target_width / source_width,
                               K.image_data_format())
Ejemplo n.º 2
0
 def call(self, inputs):
     # print("in call")
     kernel_shape = K.get_value(self.kernel).shape
     input_shape = K.shape(inputs)
     output_shape = self.compute_output_shape(input_shape)
     output_shape = [None]+list(output_shape[1:])
     print("output_shape:{}".format(output_shape))
     print("kernel_shape:{}".format(kernel_shape))
     outputs = K.deconv3d(inputs, self.kernel, output_shape,
                         strides=self.strides,
                         padding=self.padding,
                         data_format=self.data_format,
                         filter_shape=kernel_shape)
     if self.bias:
         outputs = K.bias_add(
             outputs,
             self.bias,
             data_format=self.data_format)
     if self.activation is not None:
         return self.activation(outputs)
     return outputs
Ejemplo n.º 3
0
def int_shape(x):
    return KC.int_shape(x) if KC.backend() == 'tensorflow' else KC.shape(x)
Ejemplo n.º 4
0
 def __int_shape(self, x):
     return KC.int_shape(x) if self.backend == 'tensorflow' else KC.shape(x)