Ejemplo n.º 1
0
def build_v1(hp: kt.HyperParameters, base_feature_size: int = 0):
    spectral_size = hp.Choice("spectral_size",
                              values=[8, 16, 32, 64],
                              ordered=True)
    dropout_rate = hp.Float("dropout_rate", 0.0, 0.8, step=0.1)
    output_units = hp.Choice("embedding_size", [8, 16, 32, 64, 128],
                             ordered=True)
    hidden_units = hp.Choice("hidden_units",
                             values=[32, 64, 128, 256, 512],
                             ordered=True)
    hidden_layers = hp.Int("hidden_layers", min_value=1, max_value=3)
    spec = tf.TensorSpec(
        (
            None,
            spectral_size + base_feature_size,
        ),
        dtype=tf.float32,
    )
    model = core.sgae(
        spec,
        functools.partial(
            mlp,
            output_units=output_units,
            hidden_units=(hidden_units, ) * hidden_layers,
            dropout_rate=dropout_rate,
        ),
    )
    _compile(hp, model)
    return model
Ejemplo n.º 2
0
def Float(
    hp: kt.HyperParameters,
    name: str,
    min_value: float,
    max_value: float,
    step: tp.Optional[float] = None,
    sampling: tp.Optional[str] = None,
    default: tp.Optional[float] = None,
    parent_name: tp.Optional[str] = None,
    parent_values=None,
):
    return hp.Float(
        name=name,
        min_value=min_value,
        max_value=max_value,
        step=step,
        sampling=sampling,
        default=default,
        parent_name=parent_name,
        parent_values=parent_values,
    )
Ejemplo n.º 3
0
        "LSTM", {
            "units":
            DEFAULT_HP.Int(name='units',
                           min_value=32,
                           max_value=128,
                           step=32,
                           default=64),
            "return_sequences":
            False,
            "kernel_initializer":
            "glorot_uniform",
            "activation":
            DEFAULT_HP.Choice(name='LSTM_1_activation',
                              values=['relu', 'tanh', 'sigmoid', "linear"],
                              default='relu'),
        }
    ],
               [
                   "Dropout", {
                       "rate":
                       DEFAULT_HP.Float(name='dropout',
                                        min_value=0.0,
                                        max_value=0.5,
                                        default=0.2,
                                        step=0.05)
                   }
               ], ["Dense", {
                   "activation": "linear"
               }]]
}