Ejemplo n.º 1
0
def hyperparam_optimization( x, y ) :
    nBits = x.shape[1]
    frac_test = 0.3
    x_train, x_test, y_train, y_test = train_test_split( x, y, test_size=frac_test )

    TRAIN_EPOCHS = 20
    MAX_TRIALS=20
    EXECUTIONS_PER_TRIAL = 5

    b_tuner = BayesianOptimization(
        make_optimizer_model(nBits),
        objective = 'val_mean_squared_error',
        max_trials = MAX_TRIALS,
        executions_per_trial=EXECUTIONS_PER_TRIAL,
        directory='test_dir',
        project_name='tune_optimizer',
        seed=1
    )
    b_tuner.search_space_summary()

    b_tuner.search( x=x_train, y=y_train, epochs=TRAIN_EPOCHS, validation_data=(x_test, y_test))
    b_tuner.results_summary()
    best_model = b_tuner.get_best_models()[0]

    return best_model
def train(args):
    print(args)
    global_conf.config_tf2(args)
    checkpoint_dir, log_dir, export_dir = create_env_directories(
        args, get_experiment_name(args))

    train_dataset = dataloader.get_dataset(
        args['dataloader'],
        transformation_list=args['dataloader']['train_list'],
        num_classes=args["num_classes"],
        split=args['dataloader']['train_split_id'])
    val_dataset = dataloader.get_dataset(
        args['dataloader'],
        transformation_list=args['dataloader']['val_list'],
        num_classes=args["num_classes"],
        split=args['dataloader']['val_split_id'])

    setup_mp(args)
    build_model_fn = get_model(args)
    callbacks = get_callbacks(args, log_dir)

    # tuner = Hyperband(build_model_fn,
    #                   objective='val_accuracy',
    #                   max_epochs=args['num_epochs'],
    #                   hyperband_iterations=10e100,
    #                   directory=checkpoint_dir)

    tuner = BayesianOptimization(build_model_fn,
                                 objective='val_accuracy',
                                 max_trials=100000,
                                 num_initial_points=10,
                                 directory=checkpoint_dir)

    tuner.search_space_summary()
    tuner.search(x=train_dataset,
                 validation_data=val_dataset,
                 callbacks=callbacks,
                 epochs=args['num_epochs'])
    tuner.results_summary()
Ejemplo n.º 3
0
def BuildDNN(train_samples,
             dev_samples,
             test_samples,
             norm_id,
             model_path,
             lags=None,
             seed=None,
             batch_size=512,
             n_epochs=5,
             max_trials=5,
             executions_per_trial=3,
             max_hidden_layers=3,
             min_units=16,
             max_units=64,
             unit_step=16,
             min_droprate=0.0,
             max_droprate=0.5,
             droprate_step=0.05,
             min_learnrate=1e-4,
             max_learnrate=1e-1,
             n_tune_epochs=5,
             cast_to_zero=True,
             early_stop=True,
             early_stop_patience=10,
             retrain=False,
             warm_up=False,
             initial_epoch=None,
             measurement_time='day',
             measurement_unit='$m^3/s$'):
    if not os.path.exists(model_path):
        os.makedirs(model_path)

    setting_info = {
        "model_path": model_path,
        "lags": lags,
        "seed": seed,
        "batch_size": batch_size,
        "n_epoch": n_epochs,
        "max_trials": max_trials,
        "executions_per_trial": executions_per_trial,
        "max_hidden_layers": max_hidden_layers,
        "min_units": min_units,
        "max_units": max_units,
        "unit_step": unit_step,
        "min_droprate": min_droprate,
        "max_droprate": max_droprate,
        "droprate_step": droprate_step,
        "min_learnrate": min_learnrate,
        "max_learnrate": max_learnrate,
        "n_tune_epochs": n_tune_epochs,
        "cast_to_zero": cast_to_zero,
        "early_stop": early_stop,
        "early_stop_patience": early_stop_patience,
        "retrain": retrain,
    }

    with open(model_path + 'setting.json', 'w') as outfile:
        json.dump(setting_info, outfile)

    sMin = norm_id['series_min']
    sMax = norm_id['series_max']
    # sMin = train_samples.min(axis=0)
    # sMax = train_samples.max(axis=0)
    # train_samples = 2*(train_samples-sMin)/(sMax-sMin)-1
    # dev_samples = 2*(dev_samples-sMin)/(sMax-sMin)-1
    # test_samples = 2*(test_samples-sMin)/(sMax-sMin)-1
    cal_samples = pd.concat([train_samples, dev_samples], axis=0)
    cal_samples = cal_samples.sample(frac=1)
    cal_samples = cal_samples.reset_index(drop=True)
    train_samples = cal_samples.iloc[:train_samples.shape[0]]
    dev_samples = cal_samples.iloc[train_samples.shape[0]:]
    X = cal_samples
    y = (cal_samples.pop('Y')).values
    train_x = train_samples
    train_y = train_samples.pop('Y')
    train_y = train_y.values
    dev_x = dev_samples
    dev_y = dev_samples.pop('Y')
    dev_y = dev_y.values
    test_x = test_samples
    test_y = test_samples.pop('Y')
    test_y = test_y.values

    # Config path to save optimal results
    opt_path = model_path + '\\optimal\\'
    cp_path = model_path + '\\optimal\\checkpoints\\'
    if not os.path.exists(cp_path):
        os.makedirs(cp_path)
    # restore only the latest checkpoint after every update
    checkpoint_path = cp_path + 'cp.h5'
    checkpoint_dir = os.path.dirname(checkpoint_path)
    # Define callbacks
    cp_callback = keras.callbacks.ModelCheckpoint(checkpoint_path,
                                                  save_best_only=True,
                                                  mode='min',
                                                  save_weights_only=True,
                                                  verbose=1)
    reduce_lr = keras.callbacks.ReduceLROnPlateau(monitor='val_loss',
                                                  min_lr=0.00001,
                                                  factor=0.2,
                                                  verbose=1,
                                                  patience=10,
                                                  mode='min')
    early_stopping = keras.callbacks.EarlyStopping(
        monitor='val_loss',
        mode='min',
        verbose=1,
        patience=early_stop_patience,
        restore_best_weights=True)

    def build_model(hp):
        input_shape = (train_x.shape[1], )
        model = keras.Sequential()
        num_layers = hp.Int('num_layers',
                            min_value=1,
                            max_value=max_hidden_layers,
                            step=1,
                            default=1)
        for i in range(num_layers):
            units = hp.Int('units_' + str(i),
                           min_value=min_units,
                           max_value=max_units,
                           step=unit_step)
            dropout_rate = hp.Float('drop_rate_' + str(i),
                                    min_value=min_droprate,
                                    max_value=max_droprate,
                                    step=droprate_step)
            if i == 0:
                model.add(
                    layers.Dense(units=units,
                                 activation='relu',
                                 input_shape=input_shape))
            else:
                model.add(layers.Dense(units=units, activation='relu'))
            model.add(
                layers.Dropout(rate=dropout_rate, noise_shape=None, seed=seed))
        model.add(layers.Dense(1))
        model.compile(optimizer=keras.optimizers.Adam(
            hp.Float('learning_rate',
                     min_value=min_learnrate,
                     max_value=max_learnrate,
                     sampling='LOG',
                     default=1e-2)),
                      loss='mean_squared_error',
                      metrics=['mean_absolute_error', 'mean_squared_error'])
        return model

    tuner = BayesianOptimization(build_model,
                                 objective='mean_squared_error',
                                 max_trials=max_trials,
                                 executions_per_trial=executions_per_trial,
                                 directory=model_path,
                                 project_name='BayesianOpt')

    tuner.search_space_summary()
    start = time.process_time()
    tuner.search(x=train_x,
                 y=train_y,
                 epochs=n_tune_epochs,
                 validation_data=(dev_x, dev_y),
                 callbacks=[early_stopping])
    end = time.process_time()
    time_cost = end - start
    tuner.results_summary()
    best_hps = tuner.oracle.get_best_trials(num_trials=1)[0].hyperparameters
    model = build_model(best_hps)

    if retrain or not os.path.exists(checkpoint_path):
        history = model.fit(X,
                            y,
                            epochs=n_epochs,
                            batch_size=batch_size,
                            validation_data=(X, y),
                            verbose=1,
                            callbacks=[
                                cp_callback,
                                early_stopping,
                            ])
        hist = pd.DataFrame(history.history)
        hist.to_csv(opt_path + 'PARAMS-CAL-HISTORY.csv')
        plot_history(history, opt_path + 'MAE-HISTORY.png',
                     opt_path + 'MSE-HISTORY.png')
    else:
        model.load_weights(checkpoint_path)

    train_predictions = model.predict(train_x).flatten()
    dev_predictions = model.predict(dev_x).flatten()
    test_predictions = model.predict(test_x).flatten()
    sMax = sMax[sMax.shape[0] - 1]
    sMin = sMin[sMin.shape[0] - 1]
    train_y = np.multiply(train_y + 1, sMax - sMin) / 2 + sMin
    dev_y = np.multiply(dev_y + 1, sMax - sMin) / 2 + sMin
    test_y = np.multiply(test_y + 1, sMax - sMin) / 2 + sMin
    train_predictions = np.multiply(train_predictions + 1,
                                    sMax - sMin) / 2 + sMin
    dev_predictions = np.multiply(dev_predictions + 1, sMax - sMin) / 2 + sMin
    test_predictions = np.multiply(test_predictions + 1,
                                   sMax - sMin) / 2 + sMin
    if cast_to_zero:
        train_predictions[train_predictions < 0.0] = 0.0
        dev_predictions[dev_predictions < 0.0] = 0.0
        test_predictions[test_predictions < 0.0] = 0.0
    dump_pred_results(
        path=opt_path + '/opt_pred.csv',
        train_y=train_y,
        train_predictions=train_predictions,
        dev_y=dev_y,
        dev_predictions=dev_predictions,
        test_y=test_y,
        test_predictions=test_predictions,
        time_cost=time_cost,
    )
    plot_rela_pred(train_y,
                   train_predictions,
                   measurement_time=measurement_time,
                   measurement_unit=measurement_unit,
                   fig_savepath=opt_path + 'TRAIN-PRED.png')
    plot_rela_pred(dev_y,
                   dev_predictions,
                   measurement_time=measurement_time,
                   measurement_unit=measurement_unit,
                   fig_savepath=opt_path + "DEV-PRED.png")
    plot_rela_pred(test_y,
                   test_predictions,
                   measurement_time=measurement_time,
                   measurement_unit=measurement_unit,
                   fig_savepath=opt_path + "TEST-PRED.png")
    plot_error_distribution(test_predictions, test_y,
                            opt_path + 'TEST-ERROR-DSTRI.png')
    plt.show()
Ejemplo n.º 4
0
        input_img, training_class.network_obj(input_img, hp))

    training_class.compile()

    return training_class.local_model


# This is where we set the searching strategy
tuner = BayesianOptimization(build_model,
                             objective='val_mae',
                             seed=40,
                             max_trials=500,
                             executions_per_trial=1,
                             directory=jobdir)

tuner.search_space_summary()

training_class.cache_validation()

# replacement for model.fit
tuner.search(
    training_class.local_generator,
    validation_data=training_class.local_test_generator,
    steps_per_epoch=training_class.steps_per_epoch,
    epochs=training_class.epochs,
    max_queue_size=4,  # 32,
    workers=training_class.workers,
    shuffle=False,
    use_multiprocessing=True,
    callbacks=training_class.callbacks_list,
    initial_epoch=0,
Ejemplo n.º 5
0
                     default=1e-3)),
                      loss='mse',
                      metrics=['mse'])
        return model


hypermodel = RGModel(n_hidden=2)

HYPERBAND_MAX_EPOCHS = 40
MAX_TRIALS = 40
EXECUTION_PER_TRIAL = 4

tuner = BayesianOptimization(hypermodel,
                             objective='val_mean_squared_error',
                             seed=1,
                             max_trials=MAX_TRIALS,
                             executions_per_trial=EXECUTION_PER_TRIAL,
                             directory='random_search',
                             project_name='RGBFV8')

print(tuner.search_space_summary())

N_EPOCH_SEARCH = 10
# train_generator, steps_per_epoch=200, epochs=60, validation_data=validation_generator
tuner.search(train_gen_bf, epochs=N_EPOCH_SEARCH, validation_data=valid_gen_bf)

print(tuner.results_summary())

best_model = tuner.get_best_models(num_models=1)[0]
best_model.save('/DFS-L/DATA/pritchard/ankitesg/models/BFv12.h5')