def test_Rop_numpy():
    """check sparsemax Rop, aginst numpy Rop"""
    z = np.random.uniform(low=-3, high=3, size=(100, 10))
    w = np.random.normal(size=(10, 10))

    logits = tf.placeholder(tf.float64, name='z')
    weights = tf.constant(w, name='w')
    sparsemax = kernel.sparsemax(logits)
    # tensorflow uses the chainrule forward (left to right), meaning that:
    #   $dS(z)*w/d(z) = dS(z)*w/dS(z) * dS(z)/dz = Rop(S)(z, Rop(*)(w, 1))$
    # Thus to test the Rop for sparsemax correctly a weight matrix is
    # multiplied. This causes the grad (v) in the Rop to be $dS(z)*w/dS(z)$.
    sparsemax_transform = tf.matmul(sparsemax, weights)
    sparsemax_transform_grad = tf.gradients(sparsemax_transform, [logits])[0]

    with tf.Session() as sess:
        # chain rule
        grad = np.dot(np.ones_like(z), w.T)

        # Construct S(z)
        properbility = sparsemax.eval({logits: z})
        support = properbility > 0

        # Calculate \hat{v}, which will be a vector (scalar for each z)
        v_hat = np.sum(grad * support, axis=1) / np.sum(support, axis=1)

        # Calculates J(z) * v
        numpy_grad = support * (grad - v_hat[:, np.newaxis])

        np.testing.assert_almost_equal(
            sparsemax_transform_grad.eval({logits: z}),
            numpy_grad
        )
def test_Rop_estimated():
    """check sparsemax-loss Rop, aginst estimated Rop"""
    z = np.random.uniform(low=-3, high=3, size=(100, 10))
    w = np.random.normal(1)
    q = np.zeros((100, 10))
    q[np.arange(0, 100), np.random.randint(0, 10, size=100)] = 1

    logits = tf.placeholder(tf.float64, name='z')
    labels = tf.constant(q, name='q')
    weight = tf.constant(w, name='w', dtype=tf.float64)

    sparsemax = kernel.sparsemax(logits)
    loss = kernel.sparsemax_loss(logits, sparsemax, labels)
    loss_transform = loss * weight

    with tf.Session() as sess:
        # https://www.tensorflow.org/versions/r0.8/api_docs/python/test.html
        analytical, numerical = tf.test.compute_gradient(logits,
                                                         z.shape,
                                                         loss_transform,
                                                         (100, ),
                                                         x_init_value=z,
                                                         delta=1e-9)

        np.testing.assert_almost_equal(analytical, numerical, decimal=4)
Ejemplo n.º 3
0
def sparsemax_loss(z, q):
    logits = tf.placeholder(tf.float64, name='z')
    labels = tf.placeholder(tf.float64, name='q')
    sparsemax = kernel.sparsemax(logits)
    loss = kernel.sparsemax_loss(logits, sparsemax, labels)

    with tf.Session() as sess:
        return loss.eval({logits: z, labels: q})
Ejemplo n.º 4
0
def test_Rop_numpy():
    """check sparsemax-loss Rop, aginst numpy Rop"""
    z = np.random.uniform(low=-3, high=3, size=(5, 3))
    q = np.zeros((5, 3))
    q[np.arange(0, 5), np.random.randint(0, 3, size=5)] = 1

    logits = tf.placeholder(tf.float64, name='z')
    labels = tf.placeholder(tf.float64, name='q')
    sparsemax = kernel.sparsemax(logits)
    loss = kernel.sparsemax_loss(logits, sparsemax, labels)
    grad = tf.gradients(loss, [logits])[0]

    with tf.Session() as sess:
        np.testing.assert_array_equal(grad.eval({
            logits: z,
            labels: q
        }), -q + sparsemax.eval({logits: z}))
def test_Rop_estimated():
    """check sparsemax Rop, aginst estimated Rop"""
    z = np.random.uniform(low=-3, high=3, size=(100, 10))
    w = np.random.normal(size=(10, 10))

    logits = tf.placeholder(tf.float64, name='z')
    weights = tf.constant(w, name='w')
    sparsemax = kernel.sparsemax(logits)
    sparsemax_transform = tf.matmul(sparsemax, weights)

    with tf.Session() as sess:
        # https://www.tensorflow.org/versions/r0.8/api_docs/python/test.html
        analytical, numerical = tf.test.compute_gradient(
            logits, z.shape,
            sparsemax_transform, z.shape,
            x_init_value=z, delta=1e-9
        )

        np.testing.assert_almost_equal(
            analytical,
            numerical,
            decimal=4
        )
def test_Rop_numpy():
    """check sparsemax-loss Rop, aginst numpy Rop"""
    z = np.random.uniform(low=-3, high=3, size=(100, 10))
    w = np.random.normal(size=(100, 1))
    q = np.zeros((100, 10))
    q[np.arange(0, 100), np.random.randint(0, 10, size=100)] = 1

    logits = tf.placeholder(tf.float64, name='z')
    labels = tf.constant(q, name='q')
    weights = tf.constant(w, name='w')

    sparsemax = kernel.sparsemax(logits)
    loss = kernel.sparsemax_loss(logits, sparsemax, labels)
    loss_transform = tf.expand_dims(loss, 1) * weights

    loss_transform_grad = tf.gradients(loss_transform, [logits])[0]

    with tf.Session() as sess:
        # chain rule
        grad = np.ones_like(w) * w

        np.testing.assert_array_equal(
            loss_transform_grad.eval({logits: z}),
            grad * (-q + sparsemax.eval({logits: z})))
def sparsemax(z):
    logits = tf.placeholder(tf.float64, name='z')
    sparsemax = kernel.sparsemax(logits)

    with tf.Session() as sess:
        return sparsemax.eval({logits: z})