Ejemplo n.º 1
0
def get_dataset_paths(dataset_name):
    if dataset_name == "push_box_hardware":

        episodes_root = os.path.join(get_data_ssd_root(),
                                     "dataset/push_box_hardware")
        episodes_config = load_yaml(
            os.path.join(
                get_project_root(),
                'experiments/exp_22_push_box_hardware/push_box_hardware_episodes_config.yaml'
            ))

        transporter_model_chkpt = None
        dense_descriptor_model_chkpt = "/home/manuelli/data/key_dynam/dev/experiments/22/dataset_push_box_string_pull/trained_models/perception/dense_descriptors/data_aug_2020-07-02-02-39-27-400442/net_best_model.pth"

        return {
            'dataset_name': dataset_name,
            'dataset_root': episodes_root,
            'episodes_config': episodes_config,
            'main_camera_name': 'd415_01',
            'dense_descriptor_camera_list': ['d415_01', 'd415_02'],
            'transporter_model_chkpt': transporter_model_chkpt,
            'dense_descriptor_model_chkpt': dense_descriptor_model_chkpt,
        }
    elif dataset_name == "push_box_string_pull":
        episodes_root = os.path.join(get_data_ssd_root(),
                                     "dataset/push_box_string_pull")
        episodes_config = load_yaml(
            os.path.join(
                get_project_root(),
                'experiments/exp_22_push_box_hardware/push_box_string_pull_episodes_config.yaml'
            ))

        transporter_model_chkpt = None

        dense_descriptor_model_chkpt = "/home/manuelli/data/key_dynam/dev/experiments/22/dataset_push_box_string_pull/trained_models/perception/dense_descriptors/data_aug_2020-07-02-02-39-27-400442/net_best_model.pth"

        return {
            'dataset_name': dataset_name,
            'dataset_root': episodes_root,
            'episodes_config': episodes_config,
            'main_camera_name': 'd415_01',
            'dense_descriptor_camera_list': ['d415_01', 'd415_02'],
            'transporter_model_chkpt': transporter_model_chkpt,
            'dense_descriptor_model_chkpt': dense_descriptor_model_chkpt,
        }

    else:
        raise ValueError("unknown dataset:", dataset_name)
Ejemplo n.º 2
0
def top_down_dataset_root():
    dataset_name = "2020-04-20-14-58-21-418302_T_aug_random_velocity_1000"
    # dataset_root = os.path.join(get_data_root(), "dev/experiments/09/data", dataset_name)
    dataset_root = os.path.join(get_data_ssd_root(), 'dataset', dataset_name)
    config = load_yaml(os.path.join(dataset_root, 'config.yaml'))

    return {'dataset_name': dataset_name,
            'dataset_root': dataset_root,
            'config': config,
            'main_camera_name': 'camera_1_top_down'}
Ejemplo n.º 3
0
def single_corelle_mug_600():
    dataset_name = "single_corelle_mug_600"

    dataset_root = os.path.join(get_data_ssd_root(), 'dataset', dataset_name)
    config = load_yaml(os.path.join(dataset_root, 'config.yaml'))

    return {
        'dataset_name': dataset_name,
        'dataset_root': dataset_root,
        'config': config,
        'main_camera_name': 'camera_1_top_down',
    }
Ejemplo n.º 4
0
def mugs_random_colors_1000():
    dataset_name = "mugs_random_colors_1000"

    dataset_root = os.path.join(get_data_ssd_root(), 'dataset', dataset_name)
    config = load_yaml(os.path.join(dataset_root, 'config.yaml'))

    return {
        'dataset_name': dataset_name,
        'dataset_root': dataset_root,
        'config': config,
        'main_camera_name': 'camera_1_top_down',
    }
Ejemplo n.º 5
0
def angled_cam_dataset_root():
    dataset_name = "2020-04-23-20-45-12-697915_T_aug_random_velocity_1000_angled_cam"

    # prepare folders
    # dataset_root = os.path.join(get_data_root(), 'dev/experiments/10/data', dataset_name)
    dataset_root = os.path.join(get_data_ssd_root(), 'dataset', dataset_name)
    config = load_yaml(os.path.join(dataset_root, 'config.yaml'))

    return {'dataset_name': dataset_name,
            'dataset_root': dataset_root,
            'config': config,
            'main_camera_name': 'camera_angled',
            }
Ejemplo n.º 6
0
def get_dataset_paths(dataset_name):
    if dataset_name == "2020-04-20-14-58-21-418302_T_aug_random_velocity_1000":
        return top_down_dataset_root()
    elif dataset_name == "2020-04-23-20-45-12-697915_T_aug_random_velocity_1000_angled_cam":
        return angled_cam_dataset_root()
    elif dataset_name == "box_push_1000_top_down":
        dataset_root = os.path.join(get_data_ssd_root(), 'dataset', "box_push_1000")
        config = load_yaml(os.path.join(dataset_root, 'config.yaml'))
        transporter_model_chkpt = "/home/manuelli/data/key_dynam/dev/experiments/drake_pusher_slider_v2/dataset_box_push_1000_top_down/trained_models/perception/transporter/transporter_standard_2020-06-14-22-29-31-256422/train_nKp6_invStd10.0/net_best.pth"

        dense_descriptor_model_chkpt = "/home/manuelli/data/key_dynam/dev/experiments/drake_pusher_slider_v2/dataset_box_push_1000_top_down/trained_models/perception/dense_descriptors/data_aug_2020-06-14-21-47-52-389769/net_best_model.pth"


        return {'dataset_name': dataset_name,
                'dataset_root': dataset_root,
                'config': config,
                'main_camera_name': 'camera_1_top_down',
                'dense_descriptor_camera_list': ['camera_1_top_down', 'camera_2_top_down_rotated'],
                'transporter_model_chkpt': transporter_model_chkpt,
                'dense_descriptor_model_chkpt': dense_descriptor_model_chkpt,
                }
    elif dataset_name == "box_push_1000_angled":
        dataset_root = os.path.join(get_data_ssd_root(), 'dataset', "box_push_1000")
        config = load_yaml(os.path.join(dataset_root, 'config.yaml'))
        transporter_model_chkpt = "/home/manuelli/data/key_dynam/dev/experiments/drake_pusher_slider_v2/dataset_box_push_1000_angled/trained_models/perception/transporter/transporter_standard_2020-06-15-18-35-52-478769/train_nKp6_invStd10.0/net_best.pth"

        dense_descriptor_model_chkpt = "/home/manuelli/data/key_dynam/dev/experiments/drake_pusher_slider_v2/dataset_box_push_1000_angled/trained_models/perception/dense_descriptors/data_aug_2020-06-15-15-39-24-127276/net_best_model.pth"

        return {'dataset_name': dataset_name,
                'dataset_root': dataset_root,
                'config': config,
                'main_camera_name': 'camera_angled',
                'dense_descriptor_camera_list': ['camera_angled', 'camera_angled_rotated'],
                'transporter_model_chkpt': transporter_model_chkpt,
                'dense_descriptor_model_chkpt': dense_descriptor_model_chkpt,
                }
    else:
        raise ValueError("unknown dataset:", dataset_name)
Ejemplo n.º 7
0
def box_on_side_dataset_root():
    dataset_name = "dps_box_on_side_600"
    # dataset_root = os.path.join(get_data_root(), "dev/experiments/18/data", dataset_name)
    dataset_root = os.path.join(get_data_ssd_root(), 'dataset', dataset_name)
    config = load_yaml(os.path.join(dataset_root, 'config.yaml'))

    dense_descriptor_model_chkpt = "/home/manuelli/data/key_dynam/dev/experiments/drake_pusher_slider_box_on_side/dataset_dps_box_on_side_600/trained_models/perception/dense_descriptor/3D_loss_camera_angled_2020-05-13-23-39-35-818188/net_best_dy_model.pth"

    return {'dataset_name': dataset_name,
            'dataset_root': dataset_root,
            'config': config,
            'main_camera_name': 'camera_angled',
            'dense_descriptor_model_chkpt': dense_descriptor_model_chkpt,
            }
Ejemplo n.º 8
0
def correlle_mug_small_many_colors_600():
    dataset_name = "correlle_mug-small_many_colors_600"

    dataset_root = os.path.join(get_data_ssd_root(), 'dataset', dataset_name)
    config = load_yaml(os.path.join(dataset_root, 'config.yaml'))

    dense_descriptor_model_chkpt = "/home/manuelli/data/key_dynam/dev/experiments/20/dataset_correlle_mug-small_many_colors_600/trained_models/perception/dense_descriptors/data_aug_2020-06-03-16-41-29-740641/net_best_model.pth"

    return {
        'dataset_name': dataset_name,
        'dataset_root': dataset_root,
        'config': config,
        'main_camera_name': 'camera_1_top_down',
        "dense_descriptor_model_chkpt": dense_descriptor_model_chkpt,
    }
Ejemplo n.º 9
0
def main():
    start_time = time.time()
    config = load_yaml(os.path.join(get_project_root(), 'experiments/drake_pusher_slider/env_config.yaml'))
    config['dataset']['num_episodes'] = 1000 # half for train, half for valid

    set_seed(500) # just randomly chosen

    num_episodes = config['dataset']['num_episodes']
    DATASET_NAME = "box_push_%d" %(num_episodes)
    OUTPUT_DIR = os.path.join(get_data_ssd_root(), 'dataset', DATASET_NAME)

    if not os.path.exists(OUTPUT_DIR):
        os.makedirs(OUTPUT_DIR)
    collect_episodes(
        config,
        output_dir=OUTPUT_DIR,
        visualize=False,
        debug=False)

    elapsed = time.time() - start_time
    print("Generating and saving dataset to disk took %d seconds" % (int(elapsed)))
Ejemplo n.º 10
0
def multiprocess_main(num_episodes=1000, num_threads=4):
    set_seed(500)  # just randomly chosen

    start_time = time.time()
    config = load_yaml(
        os.path.join(get_project_root(),
                     'experiments/exp_20_mugs/config.yaml'))

    num_episodes_per_thread = math.ceil(num_episodes / num_threads)
    num_episodes = num_threads * num_episodes_per_thread

    # DATASET_NAME = "mugs_random_colors_%d" % (num_episodes)
    # DATASET_NAME = "single_mug_%d"
    # DATASET_NAME = "correlle_mug-small_single_color_%d" %(num_episodes)
    # DATASET_NAME = "single_corelle_mug_%d" %(num_episodes)
    # DATASET_NAME = "correlle_mug-small_many_colors_%d" %(num_episodes)
    DATASET_NAME = "correlle_mug-small_many_colors_random_%d" % (num_episodes)
    # OUTPUT_DIR = os.path.join(get_data_root(), 'sandbox', DATASET_NAME)
    OUTPUT_DIR = os.path.join(get_data_ssd_root(), 'dataset', DATASET_NAME)
    print("OUTPUT_DIR:", OUTPUT_DIR)

    output_dir = OUTPUT_DIR
    if not os.path.exists(output_dir):
        os.makedirs(output_dir)

    def f(q_tmp):
        config = load_yaml(
            os.path.join(get_project_root(),
                         'experiments/exp_20_mugs/config.yaml'))
        config['dataset']['num_episodes'] = num_episodes_per_thread
        out = collect_episodes(config,
                               output_dir=OUTPUT_DIR,
                               visualize=False,
                               debug=False,
                               run_from_thread=True)

        q_tmp.put(out)

    q = Queue()

    process_list = []
    for i in range(num_threads):
        p = Process(target=f, args=(q, ))
        p.start()
        process_list.append(p)

    metadata = {'episodes': {}}
    for p in process_list:
        while p.is_alive():
            p.join(timeout=1)

            # empty out the queue
            while not q.empty():
                out = q.get()
                metadata['episodes'].update(out['metadata']['episodes'])

    # double check
    for p in process_list:
        p.join()

    time.sleep(1.0)
    print("All threads joined")
    elapsed = time.time() - start_time

    # collect the metadata.yaml files

    while not q.empty():
        out = q.get()
        metadata['episodes'].update(out['metadata']['episodes'])

    save_yaml(metadata, os.path.join(OUTPUT_DIR, 'metadata.yaml'))
    print("Generating and saving dataset to disk took %d seconds" %
          (int(elapsed)))