Ejemplo n.º 1
0
import settings

from settings import process_options, perform_setup
(options, args) = process_options()

IMG_DTYPE, SEG_DTYPE, _globalnpfile, _globalexpectedpixel, _nx, _ny = perform_setup(
    options)
print('database file: %s ' % settings._globalnpfile)

from setupmodel import GetDataDictionary, BuildDB
from trainmodel import TrainModel
from predictmodel import PredictModel
from kfolds import OneKfold, Kfold

if options.builddb:
    BuildDB()
if options.kfolds > 1:
    if options.idfold > -1:
        databaseinfo = GetDataDictionary(options.dbfile)
        OneKfold(i=options.idfold, datadict=databaseinfo)
    else:
        Kfold()
if options.trainmodel and options.kfolds == 1:  # no kfolds, i.e. k=1
    TrainModel()
if options.predictmodel:
    PredictModel()
if ((not options.builddb) and (not options.trainmodel)
        and (not options.predictmodel) and (options.kfolds == 1)):
    print("parser error")
Ejemplo n.º 2
0
        if not options.datafiles_tumor:
            print('no list of tumor .npy files given for training')
            quit()
        else:
            saveloclist = options.datafiles_tumor
    else:
        print('not specified liver vs tumor')
        quit()

    print('files already generated: using', saveloclist)

    if options.kfolds > 1:
        if options.idfold > -1:
            OneKfold(i=options.idfold, saveloclist=saveloclist)
        else:
            Kfold(saveloclist=saveloclist)
    else:
        TrainModel(saveloclist=saveloclist)

if options.predictmodel:
    if options.predictfromcsv:
        PredictCSV(modelloc=options.predictmodel,
                   outdir=options.outdir,
                   indir=options.predictfromcsv)
    else:
        PredictNifti(model,
                     options.outdir + '/predictions/pred',
                     options.predictimage,
                     segloc=None)

    PredictModel()