def pipeline(my_pipe_param: list = [100, 200], my_pipe_param3: list = [1, 2]):
    loop_args = [{'a': 1, 'b': 2}, {'a': 10, 'b': 20}]
    with Loop(loop_args).enumerate() as (i, item):
        # 2 iterations in total
        op1_template = components.load_component_from_text(op1_yaml)
        op1 = op1_template(index=i, item=item.a)

        with dsl.ParallelFor(my_pipe_param) as inner_item:
            # 4 iterations in total
            op11_template = components.load_component_from_text(op11_yaml)
            op11 = op11_template(item.a, inner_item)

            my_pipe_param2: List[int] = [4, 5]
            with Loop(my_pipe_param2).enumerate() as (j, inner_item):
                # 8 iterations in total
                op12_template = components.load_component_from_text(op12_yaml)
                op12 = op12_template(outter_index=i,
                                     index=j,
                                     item=item.b,
                                     inner_item=inner_item)
                with dsl.ParallelFor(my_pipe_param3) as inner_item:
                    # 16 iterations in total
                    op13_template = components.load_component_from_text(
                        op13_yaml)
                    op13 = op13_template(item.b, inner_item)

        op2_template = components.load_component_from_text(op2_yaml)
        op2 = op2_template(item.b)
def my_pipeline(
    text_parameter:
    str = '[{"p_a": [{"q_a":1}, {"q_a":2}], "p_b": "hello"}, {"p_a": [{"q_a":11},{"q_a":22}], "p_b": "halo"}]'
):
    with dsl.ParallelFor(text_parameter) as item:
        with dsl.ParallelFor(item.p_a) as item_p_a:
            print_op(item_p_a.q_a)
def my_pipeline(loop_parameter: list = [
    {
        "p_a": [{
            "q_a": '1'
        }, {
            "q_a": '2'
        }],
        "p_b": "hello",
    },
    {
        "p_a": [{
            "q_a": '11'
        }, {
            "q_a": '22'
        }],
        "p_b": "halo",
    },
]):
    # Nested loop with withParams loop args
    with dsl.ParallelFor(loop_parameter) as item:
        with dsl.ParallelFor(item.p_a) as item_p_a:
            print_op(msg=item_p_a.q_a)

    # Nested loop with withItems loop args
    with dsl.ParallelFor(['1', '2']) as outter_item:
        print_op(msg=outter_item)
        with dsl.ParallelFor(['100', '200', '300']) as inner_item:
            print_op(msg=outter_item, msg2=inner_item)
Ejemplo n.º 4
0
def flip_component(flip_result, maxVal, my_pipe_param):
    with dsl.Condition(flip_result == 'heads'):
        print_flip = print_op(flip_result)
        flipA = flip_coin_op().after(print_flip)
        loop_args = [{'a': 1, 'b': 2}, {'a': 10, 'b': 20}]
        with dsl.ParallelFor(loop_args) as item:
            op1 = dsl.ContainerOp(
                name="my-in-coop1",
                image="library/bash:4.4.23",
                command=["sh", "-c"],
                arguments=["echo op1 %s %s" % (item.a, my_pipe_param)],
            )

            with dsl.ParallelFor([100, 200, 300]) as inner_item:
                op11 = dsl.ContainerOp(
                    name="my-inner-inner-coop",
                    image="library/bash:4.4.23",
                    command=["sh", "-c"],
                    arguments=[
                        "echo op1 %s %s %s" %
                        (item.a, inner_item, my_pipe_param)
                    ],
                )

            op2 = dsl.ContainerOp(
                name="my-in-coop2",
                image="library/bash:4.4.23",
                command=["sh", "-c"],
                arguments=["echo op2 %s" % item.b],
            )
        flip_component(flipA.output, maxVal, my_pipe_param)
Ejemplo n.º 5
0
def my_pipeline(text_parameter: str = json.dumps([
    {'p_a': -1, 'p_b': 'hello'},
    {'p_a': 2, 'p_b': 'halo'},
    {'p_a': 3, 'p_b': 'ni hao'},
], sort_keys=True)):

  flip1 = flip_coin_op()

  with dsl.Condition(flip1.output != 'no-such-result'): # always true

    args_generator = args_generator_op()
    with dsl.ParallelFor(args_generator.output) as item:
      print_op(text_parameter)

      with dsl.Condition(flip1.output == 'heads'):
        print_op(item.A_a)

      with dsl.Condition(flip1.output == 'tails'):
        print_op(item.B_b)

      with dsl.Condition(item.A_a == '1'):
        with dsl.ParallelFor([{'a':'-1'}, {'a':'-2'}]) as item:
          print_op(item)

  with dsl.ParallelFor(text_parameter) as item:
    with dsl.Condition(item.p_a > 0):
      print_op(item.p_a)
      print_op(item.p_b)
def pipeline(my_pipe_param: int = 10):
    loop_args = [{'a': 1, 'b': 2}, {'a': 10, 'b': 20}]
    with dsl.ParallelFor(loop_args) as item:
        op1 = dsl.ContainerOp(
            name="my-in-coop1",
            image="library/bash:4.4.23",
            command=["sh", "-c"],
            arguments=["echo op1 %s %s" % (item.a, my_pipe_param)],
        )

        with dsl.ParallelFor([100, 200, 300]) as inner_item:
            op11 = dsl.ContainerOp(
                name="my-inner-inner-coop",
                image="library/bash:4.4.23",
                command=["sh", "-c"],
                arguments=[
                    "echo op1 %s %s %s" % (item.a, inner_item, my_pipe_param)
                ],
            )

        op2 = dsl.ContainerOp(
            name="my-in-coop2",
            image="library/bash:4.4.23",
            command=["sh", "-c"],
            arguments=["echo op2 %s" % item.b],
        )

    op_out = dsl.ContainerOp(
        name="my-out-cop",
        image="library/bash:4.4.23",
        command=["sh", "-c"],
        arguments=["echo %s" % my_pipe_param],
    )
Ejemplo n.º 7
0
def nested_loop(param: list = ["a", "b", "c"]):
    # param of the inner loop is used inner-most --- works fine
    with dsl.ParallelFor(param):
        with dsl.ParallelFor(param):
            PrintOp('print-0', f"print {param}")

    # param of the inner loop is not used inner-most --- fails
    with dsl.ParallelFor(param):
        with dsl.ParallelFor(param):
            PrintOp('print-1', "print")
Ejemplo n.º 8
0
def pipeline(my_pipe_param: int = 10):
    loop_args = [1, 2]
    with dsl.ParallelFor(loop_args) as item:
        op1_template = components.load_component_from_text(op1_yaml)
        op1 = op1_template(item, my_pipe_param)

        with dsl.ParallelFor([100, 200, 300]) as inner_item:
            op11_template = components.load_component_from_text(op11_yaml)
            op11 = op11_template(item, inner_item, my_pipe_param)

        op2_template = components.load_component_from_text(op2_yaml)
        op2 = op2_template(item)

    op_out_template = components.load_component_from_text(op_out_yaml)
    op_out = op_out_template(my_pipe_param)
Ejemplo n.º 9
0
def huggingface_pipeline():
    dataset_dict_task = load_dataset_op(dataset_name='imdb')
    with dsl.ParallelFor(dataset_dict_task.outputs['splits']) as split_name:
        deataset_task = split_dataset_op(
            dataset_dict=dataset_dict_task.outputs['dataset_dict'],
            split_name=split_name,
        )
Ejemplo n.º 10
0
def bikes_weather(  #pylint: disable=unused-argument
    train_epochs: int = 5,
    working_dir: str = 'gs://YOUR/GCS/PATH',  # for the full training jobs
    data_dir: str = 'gs://aju-dev-demos-codelabs/bikes_weather/',
    steps_per_epoch:
    int = -1,  # if -1, don't override normal calcs based on dataset size
    num_best_hps_list: list = [0],
    hptune_params:
    str = '[{"num_hidden_layers": %s, "learning_rate": %s, "hidden_size": %s}]'
    % (3, 1e-2, 64)):

    # create TensorBoard viz for the parent directory of all training runs, so that we can
    # compare them.
    tb_viz = tb_op(log_dir_uri='%s/%s' % (working_dir, dsl.RUN_ID_PLACEHOLDER))

    with dsl.ParallelFor(num_best_hps_list
                         ) as idx:  # start the full training runs in parallel

        train = train_op(data_dir=data_dir,
                         workdir='%s/%s' %
                         (tb_viz.outputs['log_dir_uri'], idx),
                         tb_dir=tb_viz.outputs['log_dir_uri'],
                         epochs=train_epochs,
                         steps_per_epoch=steps_per_epoch,
                         hp_idx=idx,
                         hptune_results=hptune_params)

        serve = serve_op(model_path=train.outputs['train_output_path'],
                         model_name='bikesw',
                         namespace='default')
        train.set_gpu_limit(2)
Ejemplo n.º 11
0
def bikes_weather_hptune(  #pylint: disable=unused-argument
        tune_epochs: int = 2,
        train_epochs: int = 5,
        num_tuners: int = 8,
        bucket_name:
    str = 'YOUR_BUCKET_NAME',  # used for the HP dirs; don't include the 'gs://'
        tuner_dir_prefix: str = 'hptest',
        tuner_proj: str = 'p1',
        max_trials: int = 128,
        working_dir: str = 'gs://YOUR/GCS/PATH',  # for the full training jobs
        data_dir: str = 'gs://aju-dev-demos-codelabs/bikes_weather/',
        steps_per_epoch:
    int = -1,  # if -1, don't override normal calcs based on dataset size
        num_best_hps: int = 2,  # the N best parameter sets for full training
        # the indices to the best param sets; necessary in addition to the above param because of
        # how KFP loops work currently.  Must be consistent with the above param.
    num_best_hps_list: list = [0, 1],
        thresholds: str = '{"root_mean_squared_error": 2000}'):

    hptune = dsl.ContainerOp(
        name='ktune',
        image='gcr.io/google-samples/ml-pipeline-bikes-dep:b97ee76',
        arguments=[
            '--epochs', tune_epochs, '--num-tuners', num_tuners, '--tuner-dir',
            '%s/%s' % (tuner_dir_prefix, dsl.RUN_ID_PLACEHOLDER),
            '--tuner-proj', tuner_proj, '--bucket-name', bucket_name,
            '--max-trials', max_trials, '--namespace', 'default',
            '--num-best-hps', num_best_hps, '--executions-per-trial', 2,
            '--deploy'
        ],
        file_outputs={'hps': '/tmp/hps.json'},
    )

    # create TensorBoard viz for the parent directory of all training runs, so that we can
    # compare them.
    tb_viz = tb_op(log_dir_uri='%s/%s' % (working_dir, dsl.RUN_ID_PLACEHOLDER))

    with dsl.ParallelFor(num_best_hps_list
                         ) as idx:  # start the full training runs in parallel

        train = train_op(data_dir=data_dir,
                         workdir='%s/%s' %
                         (tb_viz.outputs['log_dir_uri'], idx),
                         tb_dir=tb_viz.outputs['log_dir_uri'],
                         epochs=train_epochs,
                         steps_per_epoch=steps_per_epoch,
                         hp_idx=idx,
                         hptune_results=hptune.outputs['hps'])

        eval_metrics = eval_metrics_op(
            thresholds=thresholds,
            metrics=train.outputs['metrics_output_path'],
        )

        with dsl.Condition(eval_metrics.outputs['deploy'] == 'deploy'):
            serve = serve_op(model_path=train.outputs['train_output_path'],
                             model_name='bikesw',
                             namespace='default')

        train.set_gpu_limit(2)
Ejemplo n.º 12
0
def pipeline():
    loop_args = [{'A_a': 1, 'B_b': 2}, {'A_a': 10, 'B_b': 20}]
    with dsl.SubGraph(parallelism=2):
        with dsl.ParallelFor(loop_args) as item:
            print_op(item)
            print_op(item.A_a)
            print_op(item.B_b)
def my_pipeline():

    args_generator = args_generator_op()
    with dsl.ParallelFor(args_generator.output) as item:
        print_op(item)
        print_op(item.A_a)
        print_op(item.B_b)
Ejemplo n.º 14
0
def pipeline():
    op0 = dsl.ContainerOp(
        name="my-out-cop0",
        image='python:alpine3.6',
        command=["sh", "-c"],
        arguments=[
            'python -c "import json; import sys; json.dump([{\'a\': 1, \'b\': 2}, {\'a\': 10, \'b\': 20}], open(\'/tmp/out.json\', \'w\'))"'
        ],
        file_outputs={'out': '/tmp/out.json'},
    )

    with dsl.ParallelFor(op0.output) as item:
        with dsl.Condition(item.a == '1'):
            op1 = dsl.ContainerOp(
                name="my-in-cop1",
                image="library/bash:4.4.23",
                command=["sh", "-c"],
                arguments=["echo do output op1 item.a: %s" % item.a],
            )
            op2 = dsl.ContainerOp(
                name="my-in-cop1",
                image="library/bash:4.4.23",
                command=["sh", "-c"],
                arguments=["echo do output op1 item.a: %s" % item.a],
            ).after(op1)

    op_out = dsl.ContainerOp(
        name="my-out-cop2",
        image="library/bash:4.4.23",
        command=["sh", "-c"],
        arguments=["echo do output op2, outp: %s" % op0.output],
    )
def pipeline():
    op0 = dsl.ContainerOp(
        name="my-out-cop0",
        image='python:alpine3.6',
        command=["sh", "-c"],
        arguments=[
            'python -c "import json; import sys; json.dump([i for i in range(20, 31)], open(\'/tmp/out.json\', \'w\'))"'
        ],
        file_outputs={'out': '/tmp/out.json'},
    )

    with dsl.ParallelFor(op0.output) as item:
        op1 = dsl.ContainerOp(
            name="my-in-cop1",
            image="library/bash:4.4.23",
            command=["sh", "-c"],
            arguments=["echo do output op1 item: %s" % item],
        )

    op_out = dsl.ContainerOp(
        name="my-out-cop2",
        image="library/bash:4.4.23",
        command=["sh", "-c"],
        arguments=["echo do output op2, outp: %s" % op0.output],
    )
Ejemplo n.º 16
0
def pipeline():
    dump_loop_args_op = dump_loop_args()
    with dsl.SubGraph(parallelism=2):
        with dsl.ParallelFor(dump_loop_args_op.output) as item:
            print_op(item)
            print_op(item.A_a)
            print_op(item.B_b)
Ejemplo n.º 17
0
def demo_pipeline(
    fastqs=["/mnt/data/file1.fastq.gz", "/mnt/data/file2.fastq.gz"],
    leading: int = 5,
    trailing: int = 5,
    minlen: int = 80,
    sliding_window: str = "4:25",
    bar_color: str = "white",
    flier_color: str = "grey",
    plot_color: str = "darkgrid",
):
    """
    func_to_container_op simply converts the function into a factory that produces ops
    when called. add_pvolumes is a method of the op itself, so we need to apply it here
    when the op is actually generated, NOT above where the trim_op factory is created.
    """
    with dsl.ParallelFor(fastqs) as fastq:
        trim_task = trim_op(
            fastq=fastq,
            leading=leading,
            trailing=trailing,
            minlen=minlen,
            sliding_window=sliding_window,
        ).add_pvolumes(
            {"/mnt/data": dsl.PipelineVolume(pvc="test-data-pv-claim")})

        _ = plot_op(fastq=fastq,
                    trimmed_fastq=trim_task.outputs["trimmed_fastq"],
                    bar_color=bar_color,
                    flier_color=flier_color,
                    plot_color=plot_color).add_pvolumes({
                        "/mnt/data":
                        dsl.PipelineVolume(pvc="test-data-pv-claim")
                    })
def my_pipeline(name: str = 'KFP'):
    print_task = print_op(text='Hello {}'.format(name))
    print_op(text='{}, again.'.format(print_task.output))

    new_value = f' and {name}.'
    with dsl.ParallelFor(['1', '2']) as item:
        print_op2(text1=item, text2=new_value)
Ejemplo n.º 19
0
def my_pipeline():

  loop_args = [{'A_a': '1', 'B_b': '2'}, {'A_a': '10', 'B_b': '20'}]
  with dsl.ParallelFor(loop_args) as item:
    print_op(item)
    print_op(item.A_a)
    print_op(item.B_b)
Ejemplo n.º 20
0
def pipeline(loopidy_doop: dict = [{'a': 1, 'b': 2}, {'a': 10, 'b': 20}]):
    op0 = dsl.ContainerOp(
        name="my-out-cop0",
        image='python:alpine3.6',
        command=["sh", "-c"],
        arguments=[
            'python -c "import json; import sys; json.dump([i for i in range(20, 31)], open(\'/tmp/out.json\', \'w\'))"'
        ],
        file_outputs={'out': '/tmp/out.json'},
    )

    with dsl.ParallelFor(loopidy_doop) as item:
        op1 = dsl.ContainerOp(
            name="my-in-cop1",
            image="library/bash:4.4.23",
            command=["sh", "-c"],
            arguments=["echo no output global op1, item.a: %s" % item.a],
        ).after(op0)

    op_out = dsl.ContainerOp(
        name="my-out-cop2",
        image="library/bash:4.4.23",
        command=["sh", "-c"],
        arguments=["echo no output global op2, outp: %s" % op0.output],
    )
Ejemplo n.º 21
0
def pipeline():
    op0 = dsl.ContainerOp(
        name="gen-numbers",
        image='python:alpine3.6',
        command=["sh", "-c"],
        arguments=[
            'python -c "import random; import json; import sys; json.dump([i for i in range(20, 26)], open(\'/tmp/out.json\', \'w\'))"'
        ],
        file_outputs={'out': '/tmp/out.json'},
    )

    with dsl.ParallelFor(op0.output) as item:
        op1 = dsl.ContainerOp(
            name="my-item-print",
            image="library/bash:4.4.23",
            command=["sh", "-c"],
            arguments=["echo do output op1 item: %s" % item],
        )

    op_out = dsl.ContainerOp(
        name="total",
        image="python:alpine3.6",
        command=["sh", "-c"],
        arguments=[
            'echo output gen-numbers: %s && python -c "print(sum(%s))"' %
            (op0.output, op0.output)
        ],
    )
Ejemplo n.º 22
0
def my_pipeline(greeting='this is a test for looping through parameters'):
    print_task = print_op(text=greeting)

    generate_task = generate_op()
    with dsl.ParallelFor(generate_task.output) as item:
        sum_task = sum_op(a=item.a, b=item.b)
        sum_task.after(print_task)
        print_task_2 = print_op(sum_task.output.ignore_type())
Ejemplo n.º 23
0
def pipeline(param: int = 10):
    loop_args = [1, 2]
    with dsl.ParallelFor(loop_args, parallelism=1) as item:
        op1_template = components.load_component_from_text(op1_yaml)
        op1 = op1_template(item, param)
        condi_1 = tekton.CEL_ConditionOp(f"{item} == 2").output
        with dsl.Condition(condi_1 == 'true'):
            tekton.Break()
Ejemplo n.º 24
0
def my_pipeline(greeting:str='this is a test for looping through parameters'):
    print_task = print_op(text=greeting)

    generate_task = generate_op()
    with dsl.ParallelFor(generate_task.output) as item:
        concat_task = concat_op(a=item.a, b=item.b)
        concat_task.after(print_task)
        print_task_2 = print_op(concat_task.output)
def my_pipeline(
    msg: str = 'hello',
    loop_parameter: list = [
        {
            'A_a': 'heads',
            'B_b': ['A', 'B'],
        },
        {
            'A_a': 'tails',
            'B_b': ['X', 'Y', 'Z'],
        },
    ],
):

    flip = flip_coin_op()
    outter_args_generator = args_generator_op()

    with dsl.Condition(flip.output != 'no-such-result'):  # always true

        inner_arg_generator = args_generator_op()

        with dsl.ParallelFor(outter_args_generator.output) as item:

            print_text(msg=msg)

            with dsl.Condition(item.A_a == 'heads'):
                print_text(msg=item.B_b)

            with dsl.Condition(flip.output == 'heads'):
                print_text(msg=item.B_b)

            with dsl.Condition(item.A_a == 'tails'):
                with dsl.ParallelFor([{'a': '-1'}, {'a': '-2'}]) as inner_item:
                    print_struct(struct=inner_item)

            with dsl.ParallelFor(item.B_b) as item_b:
                print_text(msg=item_b)

            with dsl.ParallelFor(loop_parameter) as pipeline_item:
                print_text(msg=pipeline_item)

                with dsl.ParallelFor(inner_arg_generator.output) as inner_item:
                    print_text(msg=pipeline_item, msg2=inner_item.A_a)

            with dsl.ParallelFor(['1', '2']) as static_item:
                print_text(msg=static_item)

                with dsl.Condition(static_item == '1'):
                    print_text(msg='1')

    # Reference loop item from grand child
    with dsl.ParallelFor(loop_parameter) as item:
        with dsl.Condition(item.A_a == 'heads'):
            with dsl.ParallelFor(item.B_b) as item_b:
                print_text(msg=item_b)
Ejemplo n.º 26
0
def my_pipeline(
    greeting: str = 'this is a test for looping through parameters', ):
    print_task = print_op(text=greeting)
    static_loop_arguments = [{'a': '1', 'b': '2'}, {'a': '10', 'b': '20'}]

    with dsl.ParallelFor(static_loop_arguments) as item:
        concat_task = concat_op(a=item.a, b=item.b)
        concat_task.after(print_task)
        print_task_2 = print_op(text=concat_task.output)
Ejemplo n.º 27
0
def my_pipeline(
    static_loop_arguments: List[dict] = _DEFAULT_LOOP_ARGUMENTS,
    greeting='this is a test for looping through parameters'
):
    print_task = print_op(text=greeting)

    with dsl.ParallelFor(static_loop_arguments) as item:
        sum_task = sum_op(a=item.a, b=item.b)
        sum_task.after(print_task)
        print_task_2 = print_op(sum_task.output.ignore_type())
Ejemplo n.º 28
0
def my_pipeline(
    static_loop_arguments: List[dict] = _DEFAULT_LOOP_ARGUMENTS,
    greeting: str = 'this is a test for looping through parameters',
):
    print_task = print_op(text=greeting)

    with dsl.ParallelFor(static_loop_arguments) as item:
        concat_task = concat_op(a=item.a, b=item.b)
        concat_task.after(print_task)
        print_task_2 = print_op(text=concat_task.output)
Ejemplo n.º 29
0
def pipeline():
    op0_template = components.load_component_from_text(op0_yaml)
    op0 = op0_template()

    with dsl.ParallelFor(op0.output) as item:
        op1_template = components.load_component_from_text(op1_yaml)
        op1 = op1_template(item)

    op_out_template = components.load_component_from_text(op_out_yaml)
    op_out = op_out_template(op0.output)
Ejemplo n.º 30
0
def conditions_and_loops(n='3', threshold='20'):
    produce_numbers_task = produce_numbers(n)
    with dsl.ParallelFor(produce_numbers_task.output) as loop_item:
        add_numbers_task = add_numbers(loop_item, '10')
        print_number_task = print_number(add_numbers_task.output)
        with dsl.Condition(print_number_task.output > threshold):
            notify_success()

        with dsl.Condition(print_number_task.output <= threshold):
            notify_failure()