Ejemplo n.º 1
0
 def test_optional_params(self, clip, grid, device, dtype):
     C, H, W = 1, 10, 20
     img = torch.rand(C, H, W, device=device, dtype=dtype)
     if clip is None:
         res = enhance.equalize_clahe(img, grid_size=grid)
     elif grid is None:
         res = enhance.equalize_clahe(img, clip_limit=clip)
     else:
         res = enhance.equalize_clahe(img, clip, grid)
     assert isinstance(res, torch.Tensor)
     assert res.shape == img.shape
Ejemplo n.º 2
0
 def test_cardinality(self, B, C, device, dtype):
     H, W = 10, 20
     if B is None:
         img = torch.rand(C, H, W, device=device, dtype=dtype)
     else:
         img = torch.rand(B, C, H, W, device=device, dtype=dtype)
     res = enhance.equalize_clahe(img)
     assert res.shape == img.shape
Ejemplo n.º 3
0
 def test_smoke(self, device, dtype):
     C, H, W = 1, 10, 20
     img = torch.rand(C, H, W, device=device, dtype=dtype)
     res = enhance.equalize_clahe(img)
     assert isinstance(res, torch.Tensor)
     assert res.shape == img.shape
     assert res.device == img.device
     assert res.dtype == img.dtype
Ejemplo n.º 4
0
 def test_clahe(self, img):
     clip_limit: float = 2.0
     grid_size: Tuple = (8, 8)
     res = enhance.equalize_clahe(img,
                                  clip_limit=clip_limit,
                                  grid_size=grid_size)
     res_diff = enhance.equalize_clahe(img,
                                       clip_limit=clip_limit,
                                       grid_size=grid_size,
                                       slow_and_differentiable=True)
     # NOTE: for next versions we need to improve the computation of the LUT
     # and test with a better image
     expected = torch.tensor([[[
         0.1216, 0.8745, 0.9373, 0.9163, 0.8745, 0.8745, 0.9373, 0.8745,
         0.8745, 0.8118, 0.9373, 0.8745, 0.8745, 0.8118, 0.8745, 0.8745,
         0.8327, 0.8118, 0.8745, 1.0000
     ]]],
                             dtype=res.dtype,
                             device=res.device)
     exp_diff = torch.tensor([[[
         0.1250, 0.8752, 0.9042, 0.9167, 0.8401, 0.8852, 0.9302, 0.9120,
         0.8750, 0.8370, 0.9620, 0.9077, 0.8750, 0.8754, 0.9204, 0.9167,
         0.8370, 0.8806, 0.9096, 1.0000
     ]]],
                             dtype=res.dtype,
                             device=res.device)
     assert torch.allclose(
         res[..., 0, :],
         expected,
         atol=1e-04,
         rtol=1e-04,
     )
     assert torch.allclose(
         res_diff[..., 0, :],
         exp_diff,
         atol=1e-04,
         rtol=1e-04,
     )
Ejemplo n.º 5
0
 def test_clahe(self, img):
     clip_limit: float = 2.
     grid_size: Tuple = (8, 8)
     res = enhance.equalize_clahe(img,
                                  clip_limit=clip_limit,
                                  grid_size=grid_size)
     # NOTE: for next versions we need to improve the computation of the LUT
     # and test with a better image
     assert torch.allclose(
         res[..., 0, :],
         torch.tensor([[[
             0.1216, 0.8745, 0.9373, 0.9137, 0.8745, 0.8745, 0.9373, 0.8745,
             0.8745, 0.8118, 0.9373, 0.8745, 0.8745, 0.8118, 0.8745, 0.8745,
             0.8314, 0.8118, 0.8745, 1.0000
         ]]],
                      dtype=res.dtype,
                      device=res.device),
         atol=1e-04,
         rtol=1e-04)
Ejemplo n.º 6
0
 def test_ahe(self, img):
     clip_limit: float = 0.
     grid_size: Tuple = (8, 8)
     res = enhance.equalize_clahe(img,
                                  clip_limit=clip_limit,
                                  grid_size=grid_size)
     # NOTE: for next versions we need to improve the computation of the LUT
     # and test with a better image
     assert torch.allclose(
         res[..., 0, :],
         torch.tensor([[[
             0.2471, 0.4980, 0.7490, 0.6667, 0.4980, 0.4980, 0.7490, 0.4980,
             0.4980, 0.2471, 0.7490, 0.4980, 0.4980, 0.2471, 0.4980, 0.4980,
             0.3333, 0.2471, 0.4980, 1.0000
         ]]],
                      dtype=res.dtype,
                      device=res.device),
         atol=1e-04,
         rtol=1e-04)
Ejemplo n.º 7
0
 def test_he(self, img):
     # should be similar to enhance.equalize but slower. Similar because the lut is computed in a different way.
     clip_limit: float = 0.
     grid_size: Tuple = (1, 1)
     res = enhance.equalize_clahe(img,
                                  clip_limit=clip_limit,
                                  grid_size=grid_size)
     # NOTE: for next versions we need to improve the computation of the LUT
     # and test with a better image
     assert torch.allclose(
         res[..., 0, :],
         torch.tensor([[[
             0.0471, 0.0980, 0.1490, 0.2000, 0.2471, 0.2980, 0.3490, 0.3490,
             0.4471, 0.4471, 0.5490, 0.5490, 0.6471, 0.6471, 0.6980, 0.7490,
             0.8000, 0.8471, 0.8980, 1.0000
         ]]],
                      dtype=res.dtype,
                      device=res.device),
         atol=1e-04,
         rtol=1e-04)
Ejemplo n.º 8
0
 def grad_rot(input, a, b, c):
     rot = rotate(input,
                  torch.tensor(30., dtype=input.dtype, device=device))
     return enhance.equalize_clahe(rot, a, b, c)
Ejemplo n.º 9
0
 def test_exception_tensor_type(self):
     with pytest.raises(TypeError):
         enhance.equalize_clahe([1, 2, 3])
Ejemplo n.º 10
0
 def test_exception_tensor_dims(self, dims):
     img = torch.rand(dims)
     with pytest.raises(ValueError):
         enhance.equalize_clahe(img)
Ejemplo n.º 11
0
 def test_exception(self, B, clip, grid, exception_type):
     C, H, W = 1, 10, 20
     img = torch.rand(B, C, H, W)
     with pytest.raises(exception_type):
         enhance.equalize_clahe(img, clip, grid)