Ejemplo n.º 1
0
    def run(self, simu_path, pool_folder, eval_results_path):
        """
        """

        nparams = len(pool_folder)
        plog = self.get_param_from_log(simu_path)
        nsimu = int(plog['nsimu'])
        param_name = plog["parameter to explore name"]
        param = self.get_param(pool_folder)

        kt_plate = []

        logger.info("Running processes on each pool")
        for i, simudir in enumerate(sorted(pool_folder)):

            logger.info(color("Running processes on pool called: %s" % os.path.split(simudir)[-1], 'BOLD'))

            p = Process(results_path=simudir)
            resu = p.evaluate(name="Mitotic Plate", draw=False, verbose=False)

            kt_plate.append(resu)

        # Configure and plot the graph
        logger.info("Plotting results")
        timelapse = np.arange(0, plog['duration'], plog['dt'])

        plot_data = {}
        plot_data['title'] = "Mitotic plate formation with %s variable" % param_name
        plot_data['xaxis'] = {'data': timelapse, 'label': 'Time (second)'}
        plot_data['yaxis'] = {'label': 'Dispersion measure (relative to the spindle length)', 'axis': []}
        plot_data['error'] = False
        plot_data['legend'] = True
        # plot_data['limit_y_min'] = 0

        # Draw parameters box
        plot_data["params_box"] = [{'name': "Name", 'data': plog["name"]},
                                   {'name': "Simulations number", 'data': nsimu},

                             ]

        # User matplotlib to get color gradient
        cm = plt.get_cmap('gist_rainbow')

        for i, resu in enumerate(kt_plate):

            plot_color = cm(1. * i / nparams)

            plot_data['yaxis']['axis'].append({'data': resu['dispersion'],
                                               'color': plot_color,
                                               'legend': "%s" % resu['params'][param_name]
                                    })

        dic_plot(plot_data, os.path.join(eval_results_path, "Mitotic_Plate_Formation.svg"))

        # Now we gonna plote plate formation according to parameter explored
        plot_data['yaxis'] = {'label': 'Dispersion measure (relative to the spindle length)', 'axis': []}
        plot_data['xaxis'] = {'data': [], 'label': param_name}
        plot_data['legend'] = False
        plot_data["params_box"].append({'name': 'Infos', 'data': 'Dispersion measure is the mean to the last 30 sec before anaphase trigger'})

        yaxisparam = []
        xaxisparam = []
        for i, resu in enumerate(kt_plate):

            plot_color = cm(1. * i / nparams)

            # Compute mean plate rate see on last 30 second before anaphase
            start = (param['t_A'] - 30) / param['dt']
            stop = (param['t_A']) / param['dt']

            # Remove nan value
            disp = resu['dispersion'][start:stop]
            disp = disp[~np.isnan(disp)]
            yaxisparam.append(disp.mean())
            xaxisparam.append(resu['params'][param_name])

        plot_data['xaxis']['data'] = np.array(xaxisparam)
        plot_data['yaxis']['axis'].append({'data': np.array(yaxisparam),
                                           'color': 'blue',
                                          })

        dic_plot(plot_data, os.path.join(eval_results_path, "Mitotic_Plate_Formation2.svg"))

        return kt_plate
    def run(self, simu_path, raw_path, eval_results_path, draw=True, verbose=True):
        """
        """

        # Create eval_results_path if it does not exist
        if not os.path.isdir(eval_results_path):
            os.makedirs(eval_results_path)

        params = self.get_params(simu_path)
        meta_infos = self.get_simus_params(simu_path)
        num_steps = meta_infos.num_steps
        nsimu = int(self.get_nsimu(simu_path))
        name = self.get_name(simu_path)
        ana_onset = int(params["t_A"])

        chromo_attach = {'monotelic': np.zeros((nsimu, num_steps)),
                         'syntelic': np.zeros((nsimu, num_steps)),
                         'unattached': np.zeros((nsimu, num_steps)),
                         'amphitelic': np.zeros((nsimu, num_steps)),
                         'merotelic-cut': np.zeros((nsimu, num_steps)),
                         'merotelic-amphi': np.zeros((nsimu, num_steps)),
                         'merotelic-synte': np.zeros((nsimu, num_steps)),
                        }

        if verbose:
            logger.info("Loading data from simulations files")
        for i, (simu_id, meta) in enumerate(self.iter_simulations(raw_path,
                                                        nsimu=nsimu,
                                                        print_progress=verbose)):
            results = meta.evaluate(name="Chromosome Attachment", verbose=False)

            for attach_name, value in results.items():
                chromo_attach[attach_name][i] = value

        logger.disabled = False

        if not draw:
            return chromo_attach

        # Configure and plot the graph
        if verbose:
            logger.info("Plotting results")
        timelapse = meta_infos.timelapse

        plot_data = {}
        plot_data['title'] = "Chromosome attachment rate"
        plot_data['xaxis'] = {'data': timelapse, 'label': 'Time'}
        plot_data['yaxis'] = {'label': 'Chromosome rate', 'axis': []}
        plot_data['error'] = False

        # Draw parameters box
        plot_data["params_box"] = [{'name': "Name", 'data': name},
                                   {'name': "Simulations number", 'data': nsimu},
                             ]

        # Add annotation about anaphase onset
        plot_data["annotations"] = []
        plot_data["annotations"].append({'s': 'Anaphase onset: %i' % ana_onset,
                                         'xy': (ana_onset, 0),
                                         'xytext': (0,50),
                                         'textcoords': 'offset points',
                                         'ha': 'center',
                                         'va': 'bottom',
                                         'bbox': dict(boxstyle='round,pad=0.2',
                                                      fc='yellow',
                                                      alpha=0.3),
                                         'arrowprops': dict(arrowstyle='->',
                                                            # connectionstyle='arc3,rad=0.5',
                                                            color='black')
                                         })

        plot_data['yaxis']['axis'].append({'data': chromo_attach['monotelic'].mean(axis=0),
                                            'color': 'cyan',
                                            'legend': 'Monotelic',
                                            'error': chromo_attach['monotelic'].std(axis=0)
                                            })

        plot_data['yaxis']['axis'].append({'data': chromo_attach['unattached'].mean(axis=0),
                                            'color': 'blue',
                                            'legend': 'Unattached',
                                            'error': chromo_attach['unattached'].std(axis=0)
                                          })

        # plot_data['yaxis']['axis'].append({'data': chromo_attach['amphitelic'].mean(axis=0),
        #                                     'color': 'green',
        #                                     'legend': 'Amphitelic',
        #                                     'error': chromo_attach['amphitelic'].std(axis=0)
        #                                   })

        plot_data['yaxis']['axis'].append({'data': chromo_attach['syntelic'].mean(axis=0),
                                            'color': 'yellow',
                                            'legend': 'Syntelic',
                                            'error': chromo_attach['syntelic'].std(axis=0)
                                          })

        plot_data['yaxis']['axis'].append({'data': chromo_attach['merotelic-cut'].mean(axis=0),
                                            'color': 'orange',
                                            'legend': 'Balanced Merotelic',
                                            'error': chromo_attach['merotelic-cut'].std(axis=0)
                                          })

        plot_data['yaxis']['axis'].append({'data': chromo_attach['merotelic-amphi'].mean(axis=0),
                                            'color': 'red',
                                            'legend': 'Mero-Amphitelic',
                                            'error': chromo_attach['merotelic-amphi'].std(axis=0)
                                          })

        plot_data['yaxis']['axis'].append({'data': chromo_attach['merotelic-synte'].mean(axis=0),
                                           'color': 'purple',
                                           'legend': 'Mero-Syntelic',
                                            'error': chromo_attach['merotelic-synte'].std(axis=0)
                                          })

        dic_plot(plot_data, os.path.join(eval_results_path, "Chromosome_Attachment.svg"))

        # Now plot with logarithmic xaxis
        plot_data['xaxis']['label'] = 'Time (Logarithmic scale)'
        plot_data['logx'] = True
        dic_plot(plot_data, os.path.join(eval_results_path, "Chromosome_Attachment_logarithmic.svg"))

        # Draw same plot but without all merotelic type : we merge them
        plot_data['logx'] = False
        plot_data['yaxis']['axis'] = plot_data['yaxis']['axis'][0:4]

        mero = chromo_attach['merotelic-cut'] + chromo_attach['merotelic-synte'] + chromo_attach['merotelic-amphi']

        plot_data['yaxis']['axis'].append({'data': mero.mean(axis=0),
                                   'color': 'red',
                                   'legend': 'Merotelic',
                                    'error': mero.std(axis=0)
                                  })
        dic_plot(plot_data, os.path.join(eval_results_path, "Chromosome_Attachment_Merge_Mero.svg"))

        # Now plot with logarithmic xaxis
        plot_data['xaxis']['label'] = 'Time (Logarithmic scale)'
        plot_data['logx'] = True
        dic_plot(plot_data, os.path.join(eval_results_path, "Chromosome_Attachment_Merge_Mero_logarithmic.svg"))


        return chromo_attach
Ejemplo n.º 3
0
    def run(self, KD, draw=False):
        """
        """

        N = int(KD.params["N"])
        ana_onset = int(KD.params["t_A"])

        timelapse = np.arange(0, KD.duration, KD.dt)

        trajectories = {'spbR': KD.spbR.traj,
                        'spbL': KD.spbL.traj,
                        'chromosomes': [],
                       }

        # Retrieve kinetochores trajectories
        for ch in KD.chromosomes:

            traj = [ch.cen_A.traj,
                    ch.cen_B.traj]

            trajectories['chromosomes'].append(traj)

        if not draw:
            return trajectories

        # Draw attachment state with matplotlib
        timelapse = np.arange(0, KD.duration, KD.dt)

        plot_data = {}
        plot_data['title'] = "Chromosome kinetochores trajectories"
        plot_data['xaxis'] = {'data': timelapse, 'label': 'Time'}
        plot_data['yaxis'] = {'label': 'Relative position to SPB axes center', 'axis': []}
        plot_data['logx'] = False
        plot_data['legend'] = False

        # Add annotation about anaphase onset
        plot_data["annotations"] = []
        plot_data["annotations"].append({'s': 'Anaphase onset: %i' % ana_onset,
                                       'xy': (ana_onset, -2),
                                       'xytext': (0, 20),
                                       'textcoords': 'offset points',
                                       'ha': 'center',
                                       'va': 'bottom',
                                       'bbox': dict(boxstyle='round,pad=0.2',
                                                    fc='yellow',
                                                    alpha=0.3),
                                       'arrowprops': dict(arrowstyle='->',
                                                          # connectionstyle='arc3,rad=0.5',
                                                          color='black')
                                       })

        plot_data['yaxis']['axis'].append({'data': trajectories['spbR'],
                                          'color': 'black',
                                          'plot_args': {'ls': '-',
                                                        'lw': 3}
                                          })

        plot_data['yaxis']['axis'].append({'data': trajectories['spbL'],
                                          'color': 'black',
                                          'plot_args': {'ls': '-',
                                                        'lw': 3}
                                          })

        # User matplotlib to get color gradient
        cm = plt.get_cmap('gist_rainbow')

        for i, ch in enumerate(trajectories['chromosomes']):

            color = cm(1. * i / N)

            plot_data['yaxis']['axis'].append({'data': ch[0],
                                   'color': color,
                                   })
            plot_data['yaxis']['axis'].append({'data': ch[1],
                                   'color': color,
                                   })

        dic_plot(plot_data)

        return trajectories
Ejemplo n.º 4
0
    def run(self, KD, draw=False):
        """
        """

        N = int(KD.params["N"])
        ana_onset = int(KD.params["t_A"])

        timelapse = np.arange(0, KD.duration, KD.dt)
        num_steps = KD.duration / KD.dt

        kt_traj_step = num_steps / 20

        spindle_length = abs(KD.spbR.traj - KD.spbL.traj)

        # Dispersion is size of the segment made by extrem Kt scaled
        # by spindle size
        kt_plate = {'dispersion': None,
                    'kt_trajs': [],
                    'plate_shape_right': np.zeros((N , num_steps), dtype="float"),
                    'plate_shape_left': np.zeros((N , num_steps), dtype="float")
                    }

        max_kt = np.zeros((N * 2, num_steps), dtype="float")
        min_kt = np.zeros((N * 2, num_steps), dtype="float")

        kt_trajs = []

        for i, ch in enumerate(KD.chromosomes):
            id1 = (i * 2) - 1
            id2 = (i * 2)

            max_kt[id1] = ch.cen_A.traj
            max_kt[id2] = ch.cen_B.traj

            min_kt[id1] = ch.cen_A.traj
            min_kt[id2] = ch.cen_B.traj

            kt_trajs.append(ch.cen_A.traj / spindle_length)
            kt_trajs.append(ch.cen_B.traj / spindle_length)

            if ch.cen_A.traj.mean() < ch.cen_B.traj.mean():
                kt_plate['plate_shape_left'][i] = ch.cen_A.traj
                kt_plate['plate_shape_right'][i] = ch.cen_B.traj
            else:
                kt_plate['plate_shape_right'][i] = ch.cen_A.traj
                kt_plate['plate_shape_left'][i] = ch.cen_B.traj

        kt_plate['plate_shape_left'] = kt_plate['plate_shape_left'].std(axis=0)
        kt_plate['plate_shape_right'] = kt_plate['plate_shape_right'].std(axis=0)

        max_kt_distance = max_kt.max(axis=0)
        min_kt_distance = min_kt.min(axis=0)

        kt_plate['dispersion'] = (abs(max_kt_distance - min_kt_distance) /
                                    spindle_length)

        # Scale kt trajectories
        for kt in kt_trajs:
            kt = kt + kt_plate['dispersion']

            # Lighten array
            light_traj = np.zeros(num_steps, dtype='float')
            light_traj[::kt_traj_step] = 1
            light_traj *= kt
            light_traj[light_traj == 0] = np.nan

            kt_plate['kt_trajs'].append(light_traj)

        if not draw:
            return kt_plate

        # Draw attachment state with matplotlib
        timelapse = np.arange(0, KD.duration, KD.dt)

        plot_data = {}
        plot_data['title'] = "Centromeres dispersion variation"
        plot_data['xaxis'] = {'data': timelapse, 'label': 'Time (second)'}
        plot_data['yaxis'] = {'label': "Dispersion measure (relative to the spindle length)", 'axis': []}
        plot_data['logx'] = False
        plot_data['legend'] = False
        plot_data['limit_y_min'] = 0

        # Draw parameters box
        plot_data["params_box"] = [{'name': "Lenght Dependance factor", 'data': KD.params["ldep"]},
                                  ]

        # Add annotation about anaphase onset
        plot_data["annotations"] = []
        plot_data["annotations"].append({'s': 'Anaphase onset: %i' % ana_onset,
                                       'xy': (ana_onset, 0),
                                       'xytext': (0, 20),
                                       'textcoords': 'offset points',
                                       'ha': 'center',
                                       'va': 'bottom',
                                       'bbox': dict(boxstyle='round,pad=0.2',
                                                    fc='yellow',
                                                    alpha=0.3),
                                       'arrowprops': dict(arrowstyle='->',
                                                          # connectionstyle='arc3,rad=0.5',
                                                          color='black')
                                       })

        plot_data['yaxis']['axis'].append({'data': kt_plate['dispersion'],
                                          'color': 'blue',
                                          'plot_args' : {'lw': 2}
                                          })

        dic_plot(plot_data)

        # User matplotlib to get color gradient
        cm = plt.get_cmap('gist_rainbow')
        for j, kt in enumerate(kt_plate['kt_trajs']):

            if j%2 == 0:
                color = cm(1. * j / (N))

            plot_data['yaxis']['axis'].append({'data': kt,
                                               'color': color,
                                               'plot_args' : {'marker': 'o'}
                                               })

        dic_plot(plot_data)

        # Plot the plate shape
        plot_data['title'] = "Mitotic plate formation"
        plot_data['yaxis'] = {'label': "Centromeres position variance", 'axis': []}
        del plot_data['limit_y_min']

        plot_data['yaxis']['axis'].append({'data': kt_plate['plate_shape_right'],
                                          'color': 'blue',
                                          'legend': 'Right kinetochores'
                                          })
        plot_data['yaxis']['axis'].append({'data': kt_plate['plate_shape_left'],
                                          'color': 'red',
                                          'legend': 'Left kinetochores'
                                          })

        dic_plot(plot_data)

        return kt_plate
    def run(self, simu_path, raw_path, eval_results_path, draw=True, verbose=True):
        """
        """

        # Create eval_results_path if it does not exist
        if not os.path.isdir(eval_results_path):
            os.makedirs(eval_results_path)

        params = self.get_params(simu_path)
        meta_infos = self.get_simus_params(simu_path)
        num_steps = meta_infos.num_steps
        nsimu = int(self.get_nsimu(simu_path))
        name = self.get_name(simu_path)
        ana_onset = int(params["t_A"])
        N = int(params["N"])
        Mk = int(params["Mk"])

        attach_state = {'correct_attached': np.zeros((nsimu, num_steps)),
                        'incorrect_attached': np.zeros((nsimu, num_steps)),
                        'unattached': np.zeros((nsimu, num_steps))
                       }

        if verbose:
            logger.info("Loading data from simulations files")
        for i, (simu_id, meta) in enumerate(self.iter_simulations(raw_path,
                                                        nsimu=nsimu,
                                                        print_progress=verbose)):
            results = meta.evaluate(name="Kineto Attachment", verbose=False)

            attach_state['correct_attached'][i] = results['correct_attached']
            attach_state['incorrect_attached'][i] = results['incorrect_attached']
            attach_state['unattached'][i] = results['unattached']

        logger.disabled = False

        # Mean data
        logger.info("Processing data")
        correct_attached = attach_state['correct_attached'].mean(axis=0)
        correct_attached_std = attach_state['correct_attached'].std(axis=0)
        incorrect_attached = attach_state['incorrect_attached'].mean(axis=0)
        incorrect_attached_std = attach_state['incorrect_attached'].std(axis=0)
        unattached = attach_state['unattached'].mean(axis=0)
        unattached_std = attach_state['unattached'].std(axis=0)

        if not draw:
            return attach_state

        # Configure and plot the graph
        if verbose:
            logger.info("Plotting results")
        timelapse = meta_infos.timelapse

        plot_data = {}
        plot_data['title'] = """Kinetochores attachment rate"""
        plot_data['xaxis'] = {'data': timelapse, 'label': 'Time'}
        plot_data['yaxis'] = {'label': 'Attachment rate', 'axis': []}

        # Draw parameters box
        plot_data["params_box"] = [{'name': "Name", 'data': name},
                                   {'name': "Simulations number", 'data': nsimu},
                                   {'name': "Chromosome number", 'data': '%i' % N},
                                   {'name': "Plug site per kinetochore", 'data': '%i' % Mk}
                             ]

        # Add annotation about anaphase onset
        plot_data["annotations"] = []
        plot_data["annotations"].append({'s': 'Anaphase onset: %i' % ana_onset,
                                         'xy': (ana_onset, 0),
                                         'xytext': (0,50),
                                         'textcoords': 'offset points',
                                         'ha': 'center',
                                         'va': 'bottom',
                                         'bbox': dict(boxstyle='round,pad=0.2',
                                                      fc='yellow',
                                                      alpha=0.3),
                                         'arrowprops': dict(arrowstyle='->',
                                                            # connectionstyle='arc3,rad=0.5',
                                                            color='black')
                                         })

        correct_attached_axis = {'data': correct_attached,
                                 'color': 'green',
                                 'legend': 'Correct attached kinetochore',
                                 'error': correct_attached_std,
                                 }

        incorrect_attached_axis = {'data': incorrect_attached,
                                   'color': 'red',
                                   'legend': 'Incorrect attached kinetochore',
                                   'error': incorrect_attached_std,
                                   }

        unattached_axis = {'data': unattached,
                           'color': 'blue',
                           'legend': 'Unattached kinetochore',
                           'error': unattached_std,
                           }

        plot_data['yaxis']['axis'].append(correct_attached_axis)
        plot_data['yaxis']['axis'].append(incorrect_attached_axis)
        plot_data['yaxis']['axis'].append(unattached_axis)

        dic_plot(plot_data, os.path.join(eval_results_path, "Kineto_Attachment.svg"))

        # Now plot with log xaxis
        plot_data['xaxis']['label'] = 'Time (Logarithmic scale)'
        plot_data['logx'] = True
        dic_plot(plot_data, os.path.join(eval_results_path, "Kineto_Attachment_logarithmic.svg"))

        return attach_state
Ejemplo n.º 6
0
    def run(self, simu_path, raw_path, eval_results_path, draw=True, verbose=True):
        """
        """

        # Create eval_results_path if it does not exist
        if not os.path.isdir(eval_results_path):
            os.makedirs(eval_results_path)

        params = self.get_params(simu_path)
        meta_infos = self.get_simus_params(simu_path)
        num_steps = meta_infos.num_steps
        nsimu = int(self.get_nsimu(simu_path))
        name = self.get_name(simu_path)
        ana_onset = int(params["t_A"])

        kt_plate = {'dispersion': np.zeros((nsimu, num_steps)),
                    'plate_shape_right': np.zeros((nsimu, num_steps)),
                    'plate_shape_left': np.zeros((nsimu, num_steps)),
                    'params': params
                   }

        if verbose:
            logger.info("Loading data from simulations files")
        for i, (simu_id, meta) in enumerate(self.iter_simulations(raw_path,
                                                        nsimu=nsimu,
                                                        print_progress=verbose)):
            results = meta.evaluate(name="Mitotic Plate", verbose=False)

            kt_plate['dispersion'][i] = results['dispersion']
            kt_plate['plate_shape_left'][i] = results['plate_shape_left']
            kt_plate['plate_shape_right'][i] = results['plate_shape_right']

        logger.disabled = False

        kt_plate['dispersion_std'] = kt_plate['dispersion'].std(axis=0)
        kt_plate['dispersion'] = kt_plate['dispersion'].mean(axis=0)

        kt_plate['plate_shape_right'] = kt_plate['plate_shape_right'].mean(axis=0)
        kt_plate['plate_shape_right_std'] = kt_plate['plate_shape_right'].std(axis=0)

        kt_plate['plate_shape_left'] = kt_plate['plate_shape_left'].mean(axis=0)
        kt_plate['plate_shape_left_std'] = kt_plate['plate_shape_left'].std(axis=0)

        if not draw:
            return kt_plate

        # Configure and plot the graph
        if verbose:
            logger.info("Plotting results")
        timelapse = meta_infos.timelapse

        plot_data = {}
        plot_data['title'] = "Centromeres dispersion variation"
        plot_data['xaxis'] = {'data': timelapse, 'label': 'Time (second)'}
        plot_data['yaxis'] = {'label': 'Dispersion measure (relative to the spindle length)', 'axis': []}
        plot_data['error'] = True
        plot_data['legend'] = False
        plot_data['limit_y_min'] = 0

        # Draw parameters box
        plot_data["params_box"] = [{'name': "Name", 'data': name},
                                   {'name': "Simulations number", 'data': nsimu},
                                   {'name': "Lenght Dependance factor", 'data': params["ldep"]}
                             ]

        # Add annotation about anaphase onset
        plot_data["annotations"] = []
        plot_data["annotations"].append({'s': 'Anaphase onset: %i' % ana_onset,
                                         'xy': (ana_onset, 0),
                                         'xytext': (0,50),
                                         'textcoords': 'offset points',
                                         'ha': 'center',
                                         'va': 'bottom',
                                         'bbox': dict(boxstyle='round,pad=0.2',
                                                      fc='yellow',
                                                      alpha=0.3),
                                         'arrowprops': dict(arrowstyle='->',
                                                            # connectionstyle='arc3,rad=0.5',
                                                            color='black')
                                         })

        plot_data['yaxis']['axis'].append({'data': kt_plate['dispersion'],
                                            'color': 'blue',
                                            'error': kt_plate['dispersion_std']
                                            })

        dic_plot(plot_data, os.path.join(eval_results_path, "Mitotic_Plate_Formation.svg"))

        # Plot the plate shape
        plot_data['title'] = "Mitotic plate formation"
        plot_data['yaxis'] = {'label': "Centromeres position variance", 'axis': []}
        del plot_data['limit_y_min']
        plot_data['legend'] = True

        plot_data['yaxis']['axis'].append({'data': kt_plate['plate_shape_right'],
                                          'color': 'blue',
                                          'legend': 'Right kinetochores',
                                          'error': kt_plate['plate_shape_right_std']
                                          })
        plot_data['yaxis']['axis'].append({'data': kt_plate['plate_shape_left'],
                                          'color': 'red',
                                          'legend': 'Left kinetochores',
                                          'error': kt_plate['plate_shape_left_std']
                                          })

        dic_plot(plot_data, os.path.join(eval_results_path, "Mitotic_Plate_Formation2.svg"))

        return kt_plate
Ejemplo n.º 7
0
    def run(self, simu_path, raw_path, eval_results_path, draw=True, verbose=True):
        """
        """

        # Create eval_results_path if it does not exist
        if not os.path.isdir(eval_results_path):
            os.makedirs(eval_results_path)

        params = self.get_params(simu_path)
        meta_infos = self.get_simus_params(simu_path)
        num_steps = meta_infos.num_steps
        nsimu = int(self.get_nsimu(simu_path))
        name = self.get_name(simu_path)
        ana_onset = int(params["t_A"])
        N = int(params["N"])

        trajectories = {'spbR': np.zeros((nsimu, num_steps), dtype=float),
                        'spbL': np.zeros((nsimu, num_steps), dtype=float),
                        'chromosomes': [],
                       }

        for i in range(N):
            cen_traj = [np.zeros((nsimu, num_steps), dtype=float),
                        np.zeros((nsimu, num_steps), dtype=float)]
            trajectories['chromosomes'].append(cen_traj)

        if verbose:
            logger.info("Loading data from simulations files")
        for i, (simu_id, meta) in enumerate(self.iter_simulations(raw_path,
                                                        nsimu=nsimu,
                                                        print_progress=verbose)):
            results = meta.evaluate(name="Kinetochores Trajectories", verbose=False)

            trajectories['spbR'][i] = results['spbR']
            trajectories['spbL'][i] = results['spbL']

            for j, ch in enumerate(results['chromosomes']):
                trajectories["chromosomes"][j][0][i] = ch[0]
                trajectories["chromosomes"][j][1][i] = ch[1]

        logger.disabled = False

        if not draw:
            return trajectories

        # Configure and plot the graph
        if verbose:
            logger.info("Plotting results")
        timelapse = meta_infos.timelapse

        plot_data = {}
        plot_data['title'] = "Chromosome kinetochores trajectories"
        plot_data['xaxis'] = {'data': timelapse, 'label': 'Time'}
        plot_data['yaxis'] = {'label': 'Relative position to SPB axes center', 'axis': []}
        plot_data['error'] = False
        plot_data['legend'] = False

        # Draw parameters box
        plot_data["params_box"] = [{'name': "Name", 'data': name},
                                   {'name': "Simulations number", 'data': nsimu},
                             ]

        # Add annotation about anaphase onset
        plot_data["annotations"] = []
        plot_data["annotations"].append({'s': 'Anaphase onset: %i' % ana_onset,
                                         'xy': (ana_onset, -2.5),
                                         'xytext': (0, 20),
                                         'textcoords': 'offset points',
                                         'ha': 'center',
                                         'va': 'bottom',
                                         'bbox': dict(boxstyle='round,pad=0.2',
                                                      fc='yellow',
                                                      alpha=0.3),
                                         'arrowprops': dict(arrowstyle='->',
                                                            # connectionstyle='arc3,rad=0.5',
                                                            color='black')
                                         })

        plot_data['yaxis']['axis'].append({'data': trajectories['spbR'].mean(axis=0),
                                            'color': 'black',
                                            'error': trajectories['spbR'].std(axis=0)
                                            })

        plot_data['yaxis']['axis'].append({'data': trajectories['spbL'].mean(axis=0),
                                            'color': 'black',
                                            'error': trajectories['spbL'].std(axis=0)
                                            })

        # User matplotlib to get color gradient
        cm = plt.get_cmap('gist_rainbow')

        for i, ch in enumerate(trajectories['chromosomes']):

            color = cm(1.*i/N)

            plot_data['yaxis']['axis'].append({'data': ch[0].mean(axis=0),
                                   'color': color,
                                   'error': ch[0].std(axis=0)
                                   })
            plot_data['yaxis']['axis'].append({'data': ch[1].mean(axis=0),
                                   'color': color,
                                   'error': ch[1].std(axis=0)
                                   })

        dic_plot(plot_data, os.path.join(eval_results_path, "Kt_Trajectories.svg"))

        return trajectories
    def run(self, KD, draw=False):
        """
        """

        num_steps = KD.spbR.traj.size
        N = int(KD.params['N'])
        Mk = int(KD.params['Mk'])
        ana_onset = int(KD.params["t_A"])

        value_max = N * Mk * 2

        chromo_attach = {'monotelic': np.zeros(num_steps),
                         'syntelic': np.zeros(num_steps),
                         'unattached': np.zeros(num_steps),
                         'amphitelic': np.zeros(num_steps),
                         'merotelic-cut': np.zeros(num_steps),
                         'merotelic-amphi': np.zeros(num_steps),
                         'merotelic-synte': np.zeros(num_steps),
                        }

        for ch in KD.chromosomes:

            iterator = enumerate(zip(ch.correct_history, ch.erroneous_history))
            for i, (correct, incorrect) in iterator:

                # Kt A n° correct attachments
                ac = correct[0]
                # Kt B n° correct attachments
                bc = correct[1]
                # Kt A n° incorrect attachments
                ai = incorrect[0]
                # Kt B n° incorrect attachments
                bi = incorrect[1]

                if ac + bc + ai + bi == 0:
                    # The actual chromosome is unattached (so easy...)
                    chromo_attach['unattached'][i] += 1

                elif (ac + ai + bi == 0 and bc > 0) or \
                     (bc + bi + ai == 0 and ac > 0):
                     # The actual chromosome is monotelic
                    chromo_attach['monotelic'][i] += 1

                elif ai + bi == 0 and ac > 0 and bc > 0:
                    # The actual chromosome is amphitelic
                    chromo_attach['amphitelic'][i] += 1

                elif (ac == 0 and ai > 0) or (bc == 0 and bi > 0):
                    # The actual chromosome is syntelic
                    chromo_attach['syntelic'][i] += 1

                # It should remain here, only merotelic chromosomes.
                # Let's check it
                elif ai > 0 or bi > 0:
                    # Welcome to the merotelic world !

                    if ac == ai or bc == bi:
                        chromo_attach['merotelic-cut'][i] += 1
                    elif ac < ai or bc < bi:
                        chromo_attach['merotelic-synte'][i] += 1
                    elif ac > ai or bc > bi:
                        chromo_attach['merotelic-amphi'][i] += 1
                    else:
                        # The code should never run here unless we got errors !
                        logger.error("Problem in attachment rate algorithm (second level condition")
                        return False

                else:
                    # The code should never run here unless we got errors !
                    logger.error("Problem in attachment rate algorithm (first level condition")
                    return False

        # Normalize values on 1
        for state in chromo_attach:
            chromo_attach[state] = chromo_attach[state] / N

        if draw:
            # Draw attachment state with matplotlib
            timelapse = np.arange(0, KD.duration, KD.dt)

            plot_data = {}
            plot_data['title'] = "Chromosome attachment rate"
            plot_data['xaxis'] = {'data': timelapse, 'label': 'Time'}
            plot_data['yaxis'] = {'label': 'Attachment rate', 'axis': []}
            plot_data['logx'] = True

            # Add annotation about anaphase onset
            plot_data["annotations"] = []
            plot_data["annotations"].append({'s': 'Anaphase onset: %i' % ana_onset,
                                             'xy': (ana_onset, 0),
                                             'xytext': (0,50),
                                             'textcoords': 'offset points',
                                             'ha': 'center',
                                             'va': 'bottom',
                                             'bbox': dict(boxstyle='round,pad=0.2',
                                                          fc='yellow',
                                                          alpha=0.3),
                                             'arrowprops': dict(arrowstyle='->',
                                                                # connectionstyle='arc3,rad=0.5',
                                                                color='black')
                                             })

            plot_data['yaxis']['axis'].append({'data': chromo_attach['monotelic'],
                                                'color': 'cyan',
                                                'legend': 'Monotelic'
                                                })

            plot_data['yaxis']['axis'].append({'data': chromo_attach['unattached'],
                                                'color': 'blue',
                                                'legend': 'Unattached'
                                              })

            plot_data['yaxis']['axis'].append({'data': chromo_attach['amphitelic'],
                                                'color': 'green',
                                                'legend': 'Amphitelic'
                                              })

            plot_data['yaxis']['axis'].append({'data': chromo_attach['syntelic'],
                                                'color': 'yellow',
                                                'legend': 'Syntelic'
                                              })

            plot_data['yaxis']['axis'].append({'data': chromo_attach['merotelic-cut'],
                                                'color': 'orange',
                                                'legend': 'Balanced Merotelic'
                                              })

            plot_data['yaxis']['axis'].append({'data': chromo_attach['merotelic-amphi'],
                                                'color': 'red',
                                                'legend': 'Mero-Amphitelic'
                                              })

            plot_data['yaxis']['axis'].append({'data': chromo_attach['merotelic-synte'],
                                               'color': 'purple',
                                               'legend': 'Mero-Syntelic'
                                              })


            dic_plot(plot_data)

        return chromo_attach
    def run(self, KD, draw=False):
        """
        """

        num_steps = KD.spbR.traj.size
        N = int(KD.params['N'])
        Mk = int(KD.params['Mk'])

        value_max = N * Mk * 2

        kt_attach = {'correct_attached': np.zeros(num_steps, dtype='float'),
                        'incorrect_attached': np.zeros(num_steps, dtype='float'),
                        'unattached': np.zeros(num_steps, dtype='float')
                       }

        for ch in KD.chromosomes:

            ch_incorrect = np.array(ch.erroneous_history).sum(1)
            ch_correct = np.array(ch.correct_history).sum(1)

            kt_attach['correct_attached'] += ch_correct
            kt_attach['incorrect_attached'] += ch_incorrect

        kt_attach['unattached'] = np.ones(num_steps, dtype='float') * value_max
        kt_attach['unattached'] -= kt_attach['correct_attached']
        kt_attach['unattached'] -= kt_attach['incorrect_attached']

        # Scale values on 1
        kt_attach['correct_attached'] /= value_max
        kt_attach['incorrect_attached'] /= value_max
        kt_attach['unattached'] /= value_max

        if draw:
            # Draw attachment state with matplotlib
            timelapse = np.arange(0, KD.duration, KD.dt)

            plot_data = {}
            plot_data['title'] = "Kinetochores attachment rate"
            plot_data['xaxis'] = {'data': timelapse, 'label': 'Time'}
            plot_data['yaxis'] = {'label': 'Attachment rate', 'axis': []}

            # Draw parameters box

            correct_attached_axis = {'data': kt_attach['correct_attached'],
                                     'color': 'green',
                                     'legend': 'Correct attached kinetochore'}

            incorrect_attached_axis = {'data': kt_attach['incorrect_attached'],
                                       'color': 'red',
                                       'legend': 'Incorrect attached kinetochore'}

            unattached_axis = {'data': kt_attach['unattached'],
                               'color': 'blue',
                               'legend': 'Unattached kinetochore'}

            plot_data['yaxis']['axis'].append(correct_attached_axis)
            plot_data['yaxis']['axis'].append(incorrect_attached_axis)
            plot_data['yaxis']['axis'].append(unattached_axis)

            dic_plot(plot_data)

        return kt_attach