Ejemplo n.º 1
0
def test_solid_harmonic_scattering():
    # Compare value to analytical formula in the case of a single Gaussian
    centers = torch.FloatTensor(1, 1, 3).fill_(0)
    weights = torch.FloatTensor(1, 1).fill_(1)
    sigma_gaussian = 3.
    sigma_0_wavelet = 3.
    M, N, O, J, L = 128, 128, 128, 1, 3
    grid = torch.from_numpy(
        np.fft.ifftshift(np.mgrid[-M//2:-M//2+M, -N//2:-N//2+N, -O//2:-O//2+O].astype('float32'), axes=(1,2,3)))
    x = generate_weighted_sum_of_gaussians(grid, centers, weights, sigma_gaussian)
    scattering = HarmonicScattering3D(J=J, shape=(M, N, O), L=L, sigma_0=sigma_0_wavelet)

    scattering.max_order = 1
    scattering.method = 'integral'
    scattering.integral_powers = [1]

    for device in devices:
        if device == 'cpu':
            x = x.cpu()
            scattering.cpu()
        else:
            x = x.cuda()
            scattering.cuda()

        s = scattering(x)

        for j in range(J+1):
            sigma_wavelet = sigma_0_wavelet*2**j
            k = sigma_wavelet / np.sqrt(sigma_wavelet**2 + sigma_gaussian**2)
            for l in range(1, L+1):
                err = torch.abs(s[0, j, l, 0] - k ** l).sum()/(1e-6+s[0, j, l, 0].abs().sum())
                assert err<1e-4
Ejemplo n.º 2
0
def test_solid_harmonic_scattering():
    # Compare value to analytical formula in the case of a single Gaussian
    centers = torch.FloatTensor(1, 1, 3).fill_(0)
    weights = torch.FloatTensor(1, 1).fill_(1)
    sigma_gaussian = 3.
    sigma_0_wavelet = 3.
    M, N, O, J, L = 128, 128, 128, 1, 3
    grid = torch.from_numpy(
        np.fft.ifftshift(np.mgrid[-M//2:-M//2+M, -N//2:-N//2+N, -O//2:-O//2+O].astype('float32'), axes=(1,2,3)))
    x = generate_weighted_sum_of_gaussians(grid, centers, weights, sigma_gaussian)
    scattering = Scattering3D(M=M, N=N, O=O, J=J, L=L, sigma_0=sigma_0_wavelet)
    s = scattering(x, order_2=False, method='integral', integral_powers=[1])

    for j in range(J+1):
        sigma_wavelet = sigma_0_wavelet*2**j
        k = sigma_wavelet / np.sqrt(sigma_wavelet**2 + sigma_gaussian**2)
        for l in range(1, L+1):
            err = torch.abs(s[0, 0, j, l] - k ** l).sum()/(1e-6+s[0, 0, j, l].abs().sum())
            assert err<1e-4
def test_solid_harmonic_scattering(device, backend):
    if backend.name.endswith('_skcuda') and device == "cpu":
        pytest.skip("The skcuda backend does not support CPU tensors.")

    # Compare value to analytical formula in the case of a single Gaussian
    centers = np.zeros((1, 1, 3))
    weights = np.ones((1, 1))
    sigma_gaussian = 3.
    sigma_0_wavelet = 3.
    M, N, O, J, L = 128, 128, 128, 1, 3
    grid = np.mgrid[-M // 2:-M // 2 + M, -N // 2:-N // 2 + N,
                    -O // 2:-O // 2 + O]
    grid = grid.astype('float32')
    grid = np.fft.ifftshift(grid, axes=(1, 2, 3))
    x = torch.from_numpy(
        generate_weighted_sum_of_gaussians(grid, centers, weights,
                                           sigma_gaussian)).to(device).float()
    scattering = HarmonicScattering3D(J=J,
                                      shape=(M, N, O),
                                      L=L,
                                      sigma_0=sigma_0_wavelet,
                                      max_order=1,
                                      method='integral',
                                      integral_powers=[1],
                                      frontend='torch',
                                      backend=backend).to(device)

    scattering.max_order = 1
    scattering.method = 'integral'
    scattering.integral_powers = [1]

    s = scattering(x)

    for j in range(J + 1):
        sigma_wavelet = sigma_0_wavelet * 2**j
        k = sigma_wavelet / np.sqrt(sigma_wavelet**2 + sigma_gaussian**2)
        for l in range(1, L + 1):
            err = torch.abs(s[0, j, l, 0] -
                            k**l).sum() / (1e-6 + s[0, j, l, 0].abs().sum())
            assert err < 1e-4
Ejemplo n.º 4
0
def compute_qm7_solid_harmonic_scattering_coefficients(M=192,
                                                       N=128,
                                                       O=96,
                                                       sigma=2.,
                                                       J=2,
                                                       L=3,
                                                       integral_powers=(0.5,
                                                                        1., 2.,
                                                                        3.),
                                                       batch_size=16):
    """
        Computes the scattering coefficients of the molecules of the
        QM7 database. Channels used are full charges, valence charges
        and core charges. Linear regression of the qm7 energies with
        the given values gives MAE 2.75, RMSE 4.18 (kcal.mol-1).

        Parameters
        ----------
        M, N, O: int
            dimensions of the numerical grid
        sigma : float
            width parameter of the Gaussian that represents a particle
        J: int
            maximal scale of the solid harmonic wavelets
        L: int
            maximal first order of the solid harmonic wavelets
        integral_powers: list of int
            powers for the integrals
        batch_size: int
            size of the batch for computations

        Returns
        -------
        order_0: torch tensor
            array containing the order 0 scattering coefficients
        order_1: torch tensor
            array containing the order 1 scattering coefficients
        order_2: torch tensor
            array containing the order 2 scattering coefficients
    """
    cuda = torch.cuda.is_available()
    grid = torch.from_numpy(
        np.fft.ifftshift(np.mgrid[-M // 2:-M // 2 + M, -N // 2:-N // 2 + N,
                                  -O // 2:-O // 2 + O].astype('float32'),
                         axes=(1, 2, 3)))
    pos, full_charges, valence_charges = get_qm7_positions_and_charges(sigma)

    if cuda:
        grid = grid.cuda()
        pos = pos.cuda()
        full_charges = full_charges.cuda()
        valence_charges = valence_charges.cuda()

    n_molecules = pos.size(0)
    n_batches = np.ceil(n_molecules / batch_size).astype(int)

    scattering = Scattering3D(M=M, N=N, O=O, J=J, L=L, sigma_0=sigma)

    order_0, order_1, order_2 = [], [], []
    print('Computing solid harmonic scattering coefficients of {} molecules '
          'of QM7 database on {}'.format(pos.size(0),
                                         'GPU' if cuda else 'CPU'))
    print('sigma: {}, L: {}, J: {}, integral powers: {}'.format(
        sigma, L, J, integral_powers))

    this_time = None
    last_time = None
    for i in range(n_batches):
        this_time = time.time()
        if last_time is not None:
            dt = this_time - last_time
            print("Iteration {} ETA: [{:02}:{:02}:{:02}]".format(
                i + 1, int(((n_batches - i - 1) * dt) // 3600),
                int((((n_batches - i - 1) * dt) // 60) % 60),
                int(((n_batches - i - 1) * dt) % 60)),
                  end='\r')
        else:
            print("Iteration {} ETA: {}".format(i + 1, '-'), end='\r')
        last_time = this_time
        time.sleep(1)

        start, end = i * batch_size, min((i + 1) * batch_size, n_molecules)

        pos_batch = pos[start:end]
        full_batch = full_charges[start:end]
        val_batch = valence_charges[start:end]

        full_density_batch = generate_weighted_sum_of_gaussians(grid,
                                                                pos_batch,
                                                                full_batch,
                                                                sigma,
                                                                cuda=cuda)
        full_order_0 = compute_integrals(full_density_batch, integral_powers)
        full_order_1, full_order_2 = scattering(
            full_density_batch,
            order_2=True,
            method='integral',
            integral_powers=integral_powers)

        val_density_batch = generate_weighted_sum_of_gaussians(grid,
                                                               pos_batch,
                                                               val_batch,
                                                               sigma,
                                                               cuda=cuda)
        val_order_0 = compute_integrals(val_density_batch, integral_powers)
        val_order_1, val_order_2 = scattering(val_density_batch,
                                              order_2=True,
                                              method='integral',
                                              integral_powers=integral_powers)

        core_density_batch = full_density_batch - val_density_batch
        core_order_0 = compute_integrals(core_density_batch, integral_powers)
        core_order_1, core_order_2 = scattering(
            core_density_batch,
            order_2=True,
            method='integral',
            integral_powers=integral_powers)

        order_0.append(
            torch.stack([full_order_0, val_order_0, core_order_0], dim=-1))
        order_1.append(
            torch.stack([full_order_1, val_order_1, core_order_1], dim=-1))
        order_2.append(
            torch.stack([full_order_2, val_order_2, core_order_2], dim=-1))

    order_0 = torch.cat(order_0, dim=0)
    order_1 = torch.cat(order_1, dim=0)
    order_2 = torch.cat(order_2, dim=0)

    return order_0, order_1, order_2
Ejemplo n.º 5
0
    else:
        print("Iteration {} ETA: {}".format(i + 1, '-'))
    last_time = this_time
    time.sleep(1)

    # Extract the current batch.
    start = i * batch_size
    end = min(start + batch_size, n_molecules)

    pos_batch = pos[start:end]
    full_batch = full_charges[start:end]
    val_batch = valence_charges[start:end]

    # Calculate the density map for the nuclear charges and transfer
    # to PyTorch.
    full_density_batch = generate_weighted_sum_of_gaussians(
        grid, pos_batch, full_batch, sigma)
    full_density_batch = torch.from_numpy(full_density_batch)
    full_density_batch = full_density_batch.to(device).float()

    # Compute zeroth-order, first-order, and second-order scattering
    # coefficients of the nuclear charges.
    full_order_0 = compute_integrals(full_density_batch, integral_powers)
    full_scattering = scattering(full_density_batch)

    # Compute the map for valence charges.
    val_density_batch = generate_weighted_sum_of_gaussians(
        grid, pos_batch, val_batch, sigma)
    val_density_batch = torch.from_numpy(val_density_batch)
    val_density_batch = val_density_batch.to(device).float()

    # Compute scattering coefficients for the valence charges.