Ejemplo n.º 1
0
def main():
    m = 3
    n = 15
    test_size = 40
    k = int(1e6)
    # 产生数据
    ori_x, ori_y = generate_data(n)
    test_x, test_y = generate_data(test_size)
    # 确定梯度下降初始化内容,不带正则项
    # w0 = best_answer_without_correct(ori_x, ori_y, m)
    w0 = np.zeros((m, 1))
    x = vandermonde(ori_x, m)
    _x = vandermonde(test_x, m)
    A = x.T @ x
    t = np.mat(ori_y).T
    b = x.T @ t
    # 梯度下降求解w
    w = grad_down(w0, A, b, k, x, t)
    # 画图
    # 计算E_RMS
    e_rms = get_RMS(get_Ew(_x, w, np.mat(test_y).T), test_size)
    print('without correct in test data:e_rms=', e_rms)
    match_plot((ori_x, ori_y), m, n, w, 'grad_down')
    # 梯度下降求解w,带正则项
    la = np.exp(-9)
    A = x.T @ x + la * np.mat(np.eye(A.shape[0], A.shape[1]))
    # w0 = np.mat(best_answer_with_correct(ori_x, ori_y, m, la)).T
    w = grad_down(w0, A, b, k, x, t)
    # 计算E_RMS
    e_rms = get_RMS(get_Ew(_x, w, np.mat(test_y).T), test_size)
    print('with correct in test data:e_rms=', e_rms)
    # 画图
    match_plot((ori_x, ori_y), m, n, w, 'grad_down with correct')
Ejemplo n.º 2
0
Archivo: Q6.py Proyecto: GuiQuQu/ML_lab
def main():
    m = 14
    n = 50
    test_size = 40
    # 产生数据
    ori_x, ori_y = generate_data(n)
    test_x, test_y = generate_data(test_size)
    # 确定梯度下降初始化内容,不带正则项
    w0 = np.zeros((m, 1))
    x = vandermonde(ori_x, m)
    A = x.T @ x
    b = x.T @ np.mat(ori_y).T
    # 共轭梯度下降
    w = conjugate_down(w0, A, b)
    # 画图
    match_plot((ori_x, ori_y), m, n, w)
    # 计算E_RMS
    _x = vandermonde(test_x, m)
    e_rms = get_RMS(get_Ew(_x, w, np.mat(test_y).T), test_size)
    print('without correct in test data:e_rms=', e_rms)
    # 带正则项
    la = np.exp(-9)
    A = x.T @ x + la * np.mat(np.eye(A.shape[0], A.shape[1]))
    w = conjugate_down(w0, A, b)
    # 计算E_RMS
    e_rms = get_RMS(get_Ew(_x, w, np.mat(test_y).T), test_size)
    print('with correct in test data:e_rms=', e_rms)
    # 画图
    match_plot((ori_x, ori_y),
               m,
               n,
               w,
               line_name='conjugate_down_with_correct')
    # 确定最好的lambda
    la_list = np.array([np.exp(i) for i in range(-15, 0)])
    e_rms_train = []
    e_rms_test = []
    for _la in la_list:
        A = x.T @ x + _la * np.mat(np.eye(A.shape[0], A.shape[1]))
        w = conjugate_down(w0, A, b)
        # 计算E_RMS
        e_rms_te = get_RMS(get_Ew(_x, w, np.mat(test_y).T), test_size)
        e_rms_test.append(float(e_rms_te))
        e_rms_tr = get_RMS(get_Ew(x, w, np.mat(ori_y).T), n)
        e_rms_train.append(float(e_rms_tr))
    # 画图 e_rms ---- lambda
    # plt.xlabel('lambda($e^{-x}$)')
    s = 'train_size=' + str(n) + ',test_size=' + str(test_size)
    plt.title(s)
    plt.xlabel('lambda')
    plt.ylabel('$E_{RMS}$')
    plt.xscale('log')
    plt.xticks([np.exp(-i) for i in range(5, 15, 2)],
               ['$e^{' + str(-i) + '}$' for i in range(5, 15, 2)])
    plt.plot(la_list, e_rms_train, color='r', label='train')
    plt.plot(la_list, e_rms_test, color='b', label='test')
    plt.legend()
    plt.show()
Ejemplo n.º 3
0
def grad_down(w0, A, b, k, x, t):
    w = np.mat(w0)
    A = np.mat(A)
    b = np.mat(b)
    step_length = 0.001  # 步长
    r = np.mat(b - A * w)  # 梯度反方向
    value1 = get_Ew(x, w, t)  # 第二个
    value0 = value1
    precision = 1e-5
    for _ in range(k):
        w = w + step_length * r
        value0 = value1  # 前一个
        value1 = get_Ew(x, w, t)  # 当前的
        # 如果二次函数取值变大,则减小步长
        if value1 - value0 > 0: step_length = 0.5 * step_length
        # 跳出条件 当loss足够小时
        if value1 < precision:
            print(_)
            break
        r = np.mat(b - A * w)  # 梯度反方向
    return w
Ejemplo n.º 4
0
Archivo: Q2.py Proyecto: GuiQuQu/ML_lab
match_plot(ori, m, n, w, "solution with correct")

# 确定最好的lambda
# 通过画图来寻找近似的E(w)最低的点  绘制 train_RMS-lambda  和 test_RMS-lambda 图像


la_list = []
train_RMS = []
test_RMS = []
for _ in np.arange(-15, 0):
    la_list.append(np.exp(_))
for lal in la_list:
    _w = np.array(best_answer_with_correct(ori[0], ori[1], m, lal))
    _w = np.reshape(_w, (m, 1))
    _x = vandermonde(ori[0], m)
    _t = np.array(ori[1]).reshape(ori[1].shape[0], 1)
    train_RMS.append(get_RMS(float(get_Ew(_x, _w, _t)), n))
    _x = vandermonde(test_data[0], m)
    _t = np.array(test_data[1]).reshape(test_data[1].shape[0], 1)
    test_RMS.append(get_RMS(float(get_Ew(_x, _w, _t)), test_size))

# RMS-lambda图像
plt.xscale('log')
plt.xlabel('lambda')
plt.ylabel('$E_{RMS}$')
plt.xticks([np.exp(-i) for i in range(5, 15, 2)], ['$e^{' + str(-i) + '}$' for i in range(5, 15, 2)])
plt.plot(la_list, train_RMS, color='r', label='train')
plt.plot(la_list, test_RMS, color='b', label='test')
plt.legend()
plt.show()
Ejemplo n.º 5
0
Archivo: Q1.py Proyecto: GuiQuQu/ML_lab
# 求解
w = best_answer_without_correct(ori[0], ori[1], m)

# 拟合曲线
match_plot(ori, m, n, w, 'solution')

# 绘制loss-m图像,解释过拟合现象  m-w-E(w)
title = 'train_size=' + str(n) + ',test_size=' + str(test_size)
plt.title(title)
plt.xlabel('m')
plt.ylabel('$E_{RMS}$')
plt.xlim(0, 11)
m_list = np.arange(0, 12)
RMS_test = []
RMS_train = []
test_data = generate_data(test_size)
test = np.array(test_data[1]).reshape(test_data[1].shape[0], 1)
train = np.array(ori[1]).reshape(ori[1].shape[0], 1)
for _m in m_list:
    _w = best_answer_without_correct(ori[0], ori[1], _m + 1)
    _w = np.reshape(_w, (_m + 1, 1))
    _x = x = vandermonde(test_data[0], _m + 1)
    RMS_test.append(get_RMS(float(get_Ew(_x, _w, test)), test_size))
    _x = x = vandermonde(ori[0], _m + 1)
    RMS_train.append(get_RMS(float(get_Ew(_x, _w, train)), n))
plt.plot(m_list, RMS_test, color='b', label='test set', marker='o')
plt.plot(m_list, RMS_train, color='r', label='train set', marker='o')
plt.legend()
plt.show()