Ejemplo n.º 1
0
    def onExportCSV(self, evt=None):
        group_ids = self.controller.filelist.GetCheckedStrings()
        savegroups = []
        groupnames = []
        for checked in group_ids:
            groupname = self.controller.file_groups[str(checked)]
            dgroup = self.controller.get_group(groupname)
            savegroups.append(dgroup)
            groupnames.append(groupname)
        if len(savegroups) < 1:
            Popup(self, "No files selected to export to CSV",
                  "No files selected")
            return

        deffile = "%s_%i.csv" % (groupname, len(groupnames))
        wcards = 'CSV Files (*.csv)|*.cvs|All files (*.*)|*.*'

        outfile = FileSave(self,
                           'Export Selected Groups to CSV File',
                           default_file=deffile,
                           wildcard=wcards)

        if outfile is None:
            return

        groups2csv(savegroups,
                   outfile,
                   x='energy',
                   y='norm',
                   _larch=self.larch)
Ejemplo n.º 2
0
    def onSaveGroupMultiFits(self, evt=None):
        "Save Data and Best N Fits for the current group"
        dgroup = self.datagroup
        nfits = int(self.wids['plot_nchoice'].GetStringSelection())
        results = dgroup.lcf_result[:nfits]
        nresults = len(results)

        deffile = "%s_LinearFits%i.dat" % (dgroup.filename, nresults)
        wcards = 'Data Files (*.dat)|*.dat|All files (*.*)|*.*'

        path = FileSave(self,
                        'Save Best N Fits',
                        default_file=deffile,
                        wildcard=wcards)
        if path is None:
            return
        form = self.form
        header = [
            'Larch Linear Arrays for %2.2d best results' % (nresults),
            'Dataset filename: %s ' % dgroup.filename,
            'Larch group: %s ' % dgroup.groupname,
            'Array name: %s' % form['arrayname'],
            'Energy fit range: [%f, %f]' % (form['elo'], form['ehi'])
        ]

        label = [' energy         ', ' data           ']
        label.extend([' fit_%2.2d         ' % i for i in range(nresults)])
        label = ' '.join(label)

        out = [results[0].xdata, results[0].ydata]
        for i, res in enumerate(results):
            out.append(results[i].yfit)

        _larch = self.parent.controller.larch
        write_ascii(path, header=header, label=label, _larch=_larch, *out)
Ejemplo n.º 3
0
    def onExportFitResult(self, event=None):
        dgroup = self.datagroup
        deffile = dgroup.filename.replace('.', '_') + '.xdi'
        wcards = 'All files (*.*)|*.*'

        outfile = FileSave(self, 'Export Fit Result', default_file=deffile)

        result = self.get_fitresult()
        if outfile is not None:
            i1, i2 = get_xlims(dgroup.xdat,
                               result.user_options['emin'],
                               result.user_options['emax'])
            x = dgroup.xdat[i1:i2]
            y = dgroup.ydat[i1:i2]
            yerr = None
            if hasattr(dgroup, 'yerr'):
                yerr = 1.0*dgroup.yerr
                if not isinstance(yerr, np.ndarray):
                    yerr = yerr * np.ones(len(y))
                else:
                    yerr = yerr[i1:i2]

            export_modelresult(result, filename=outfile,
                               datafile=dgroup.filename, ydata=y,
                               yerr=yerr, x=x)
Ejemplo n.º 4
0
 def onSaveFitResult(self, event=None):
     deffile = self.datagroup.filename.replace('.', '_') + 'peak.modl'
     sfile = FileSave(self, 'Save Fit Model', default_file=deffile,
                        wildcard=ModelWcards)
     if sfile is not None:
         result = self.get_fitresult()
         save_modelresult(result, sfile)
Ejemplo n.º 5
0
 def onSaveLarchHistory(self, evt=None):
     wildcard = 'Larch file (*.lar)|*.lar|All files (*.*)|*.*'
     path = FileSave(self, message='Save Session History as Larch Script',
                     wildcard=wildcard,
                     default_file='xas_viewer_history.lar')
     if path is not None:
         self.larch._larch.input.history.save(path, session_only=True)
         self.write_message("Wrote history %s" % path, 0)
Ejemplo n.º 6
0
    def onSaveGroupStats(self, evt=None):
        "Save Statistics and Weights for Best N Fits for the current group"
        dgroup = self.datagroup
        nfits = int(self.wids['plot_nchoice'].GetStringSelection())
        results = dgroup.lcf_result[:nfits]
        nresults = len(results)
        deffile = "%s_LinearStats%i.dat" % (dgroup.filename, nresults)
        wcards = 'Data Files (*.dat)|*.dat|All files (*.*)|*.*'

        path = FileSave(self,
                        'Save Statistics and Weights for Best N Fits',
                        default_file=deffile,
                        wildcard=wcards)
        if path is None:
            return
        form = self.form

        header = [
            'Larch Linear Fit Statistics for %2.2d best results' % (nresults),
            'Dataset filename: %s ' % dgroup.filename,
            'Larch group: %s ' % dgroup.groupname,
            'Array name: %s' % form['arrayname'],
            'Energy fit range: [%f, %f]' % (form['elo'], form['ehi']),
            'N_Data: %d' % len(results[0].xdata)
        ]

        label = [
            'fit #', 'n_varys', 'n_eval', 'chi2', 'chi2_reduced',
            'akaike_info', 'bayesian_info'
        ]
        label.extend(form['comp_names'])
        label.append('Total')
        for i in range(len(label)):
            if len(label[i]) < 13:
                label[i] = (" %s                " % label[i])[:13]
        label = ' '.join(label)

        out = []
        for i, res in enumerate(results):
            dat = [(i + 1)]
            for attr in ('nvarys', 'nfev', 'chisqr', 'redchi', 'aic', 'bic'):
                dat.append(getattr(res.result, attr))
            for cname in form['comp_names'] + ['total']:
                val = 0.0
                if cname in res.params:
                    val = res.params[cname].value
                dat.append(val)
            out.append(dat)

        out = np.array(out).transpose()
        _larch = self.parent.controller.larch
        write_ascii(path, header=header, label=label, _larch=_larch, *out)
Ejemplo n.º 7
0
    def onSaveFitResult(self, event=None):
        dgroup = self.controller.get_group()
        deffile = dgroup.filename.replace('.', '_') + '.modl'

        outfile = FileSave(self, 'Save Fit Result',
                           default_file=deffile,
                           wildcard=ModelWcards)

        if outfile is not None:
            try:
                self.save_fit_result(dgroup.fit_history[-1], outfile)
            except IOError:
                print('could not write %s' % outfile)
Ejemplo n.º 8
0
    def onSaveStats(self, evt=None):
        "Save Statistics and Weights for Best N Fits"
        nfits = int(self.wids['plot_nchoice'].GetStringSelection())

        deffile = "%s_LinearStats%i.dat" % (dgroup.filename, nfits)
        wcards = 'Data Files (*.dat)|*.dat|All files (*.*)|*.*'

        path = FileSave(self,
                        'Save Statistics and Weights for Best N Fits',
                        default_file=deffile,
                        wildcard=wcards)
        if path is None:
            return

        print("save stats  %d ", nfits)
Ejemplo n.º 9
0
    def onSaveAllStats(self, evt=None):
        "Save All Statistics and Weights "
        deffile = "LinearFitStats.csv"
        wcards = 'CVS Files (*.csv)|*.csv|All files (*.*)|*.*'
        path = FileSave(self,
                        'Save Statistics Report',
                        default_file=deffile,
                        wildcard=wcards)
        if path is None:
            return
        form = self.form

        out = [
            '# Larch Linear Fit Statistics Report (best results) %s' %
            time.ctime(),
            '# Array name: %s' % form['arrayname'],
            '# Energy fit range: [%f, %f]' % (form['elo'], form['ehi'])
        ]

        label = [('Data Set' + ' ' * 25)[:25], 'n_varys', 'chi-square',
                 'chi-square_red', 'akaike_info', 'bayesian_info']
        label.extend(form['comp_names'])
        label.append('Total')
        for i in range(len(label)):
            if len(label[i]) < 12:
                label[i] = (" %s                " % label[i])[:12]
        label = ', '.join(label)
        out.append('# %s' % label)

        for name, dgroup in self.datasets.items():
            res = dgroup.lcf_result[0]
            label = dgroup.filename
            if len(label) < 25:
                label = (label + ' ' * 25)[:25]
            dat = [label]
            for attr in ('nvarys', 'chisqr', 'redchi', 'aic', 'bic'):
                dat.append(gformat(getattr(res.result, attr), 12))
            for cname in form['comp_names'] + ['total']:
                val = 0
                if cname in res.params:
                    val = res.params[cname].value
                dat.append(gformat(val, 12))
            out.append(', '.join(dat))
        out.append('')

        with open(path, 'w') as fh:
            fh.write('\n'.join(out))
Ejemplo n.º 10
0
    def save_athena_project(self, filename, grouplist, prompt=True):
        if len(grouplist) < 1:
            return
        savegroups = [self.controller.get_group(gname) for gname in grouplist]

        deffile = "%s_%i.prj" % (filename, len(grouplist))
        wcards  = 'Athena Projects (*.prj)|*.prj|All files (*.*)|*.*'

        outfile = FileSave(self, 'Save Groups to Athena Project File',
                           default_file=deffile, wildcard=wcards)

        if outfile is None:
            return
        aprj = AthenaProject(filename=outfile, _larch=self.larch)
        for label, grp in zip(grouplist, savegroups):
            aprj.add_group(grp)

        aprj.save(use_gzip=True)
        self.write_message("Saved project file %s" % (outfile))
Ejemplo n.º 11
0
    def onSaveFit(self, evt=None):
        "Save Fit and Compoents to Data File"
        print("save fit and components")
        nfit = self.current_fit
        dgroup = self.datagroup
        nfits = int(self.wids['plot_nchoice'].GetStringSelection())

        deffile = "%s_LinearFit%i.dat" % (dgroup.filename, nfit + 1)
        wcards = 'Data Files (*.dat)|*.dat|All files (*.*)|*.*'

        path = FileSave(self,
                        'Save Fit and Components to File',
                        default_file=deffile,
                        wildcard=wcards)
        if path is None:
            return

        form = self.form
        label = [' energy         ', ' data           ', ' best_fit       ']
        result = dgroup.lcf_result[nfit]

        header = [
            'Fit #%2.2d' % (nfit + 1),
            'Fit arrayname: %s' % form['arrayname'],
            'E0:  %f ' % form['e0'],
            'Energy fit range: [%f, %f]' % (form['elo'], form['ehi']),
            'Components: '
        ]
        for key, val in result.weights.items():
            header.append('  %s: %f' % (key, val))

        report = fit_report(result.result).split('\n')
        header.extend(report)

        out = [result.xdata, result.ydata, result.yfit]
        for compname, compdata in result.ycomps.items():
            label.append(' %s' % (compname + ' ' *
                                  (max(1, 15 - len(compname)))))
            out.append(compdata)

        label = ' '.join(label)
        _larch = self.parent.controller.larch
        write_ascii(path, header=header, label=label, _larch=_larch, *out)
Ejemplo n.º 12
0
    def onExportFitResult(self, event=None):
        dgroup = self.controller.get_group()
        deffile = dgroup.filename.replace('.', '_') + '_result.xdi'
        wcards = 'All files (*.*)|*.*'

        outfile = FileSave(self, 'Export Fit Result',
                           default_file=deffile, wildcard=wcards)

        if outfile is not None:
            i1, i2 = self.get_xranges(dgroup.xdat)
            x = dgroup.xdat[i1:i2]
            y = dgroup.ydat[i1:i2]
            yerr = None
            if hasattr(dgroup, 'yerr'):
                yerr = 1.0*dgroup.yerr
                if not isinstance(yerr, np.ndarray):
                    yerr = yerr * np.ones(len(y))
                else:
                    yerr = yerr[i1:i2]

            export_modelresult(dgroup.fit_history[-1],
                               filename=outfile,
                               datafile=dgroup.filename,
                               ydata=y, yerr=yerr, x=x)