Ejemplo n.º 1
0
def do_hm(target_tile_path):
    # load tile for matching
    target_tile_name = target_tile_path.stem + target_tile_path.suffix
    try:
        target_tile = File(target_tile_path, mode='r') # this can take some time
     
        # use global to get the info, apologize to programming teachers
        global ref_tile
        global ky_lidar_fix_path
    
        # match histograms
        new_dist = hist_match(target_tile.intensity, ref_tile.intensity)
	
        # apply transformation
        new_tile_path = ky_lidar_fix_path / target_tile_name
        new_tile = File(new_tile_path, mode='w', header=target_tile.header)
        new_tile.points = target_tile.points
        new_tile.intensity = new_dist
        new_tile.close()
        return (True, new_tile_path)
    
    except:
        # if we can't load the file, that's a big problem, but it seems to happen
        # sometimes. 
        return (False, target_tile_path)
 def write_las_grid(self,filename, lb = -10, ub = 10, granularity = 0.1):
     out_file = File(filename, mode = "w", header = Header())
     out_file.header.scale = (0.001,0.001,0.001)
     grid = self.get_3d_grid(lb, ub, granularity)
     out_file.x = grid[:,0]* 300
     out_file.y = grid[:,1] * 300
     out_file.z = grid[:,2] * 300
     out_file.intensity = grid[:,2] * 300
     return(out_file)
 def write_las_grid(self, filename, lb=-10, ub=10, granularity=0.1):
     out_file = File(filename, mode="w", header=Header())
     out_file.header.scale = (0.001, 0.001, 0.001)
     grid = self.get_3d_grid(lb, ub, granularity)
     out_file.x = grid[:, 0] * 300
     out_file.y = grid[:, 1] * 300
     out_file.z = grid[:, 2] * 300
     out_file.intensity = grid[:, 2] * 300
     return (out_file)
Ejemplo n.º 4
0
def write_LAS_intensity(pc_xyz,
                        v,
                        output_las_fn,
                        input_las_fn,
                        rescale='none'):
    import datetime
    from laspy.file import File
    from skimage import exposure
    import copy

    inFile = File(input_las_fn, mode='r')

    #normalize input and generate colors for height using colormap
    #stretch to 10-90th percentile
    #v_1090p = np.percentile(v, [10, 90])
    #stretch to 2-98th percentile
    v_0298p = np.percentile(v, [2, 98])
    if rescale == 'none':
        v_rescale = exposure.rescale_intensity(v,
                                               in_range=(v_0298p[0],
                                                         v_0298p[1]))
    elif rescale == 'median':
        bounds = np.round(np.median(np.abs(v_0298p)), decimals=2)
        v_rescale = exposure.rescale_intensity(v, in_range=(-bounds, bounds))

    v_rescale = v_rescale * (np.power(2, 16) - 1).astype('uint16')
    outFile = File(output_las_fn, mode='w', header=inFile.header)
    new_header = copy.copy(outFile.header)
    #setting some variables
    new_header.created_year = datetime.datetime.now().year
    new_header.created_day = datetime.datetime.now().timetuple().tm_yday
    new_header.x_max = pc_xyz[:, 0].max()
    new_header.x_min = pc_xyz[:, 0].min()
    new_header.y_max = pc_xyz[:, 1].max()
    new_header.y_min = pc_xyz[:, 1].min()
    new_header.z_max = pc_xyz[:, 2].max()
    new_header.z_min = pc_xyz[:, 2].min()
    new_header.point_records_count = pc_xyz.shape[0]
    new_header.point_return_count = 0
    outFile.header.count = v.shape[0]
    new_header.scale = inFile.header.scale
    new_header.offset = inFile.header.offset
    outFile.X = (pc_xyz[:, 0] -
                 inFile.header.offset[0]) / inFile.header.scale[0]
    outFile.Y = (pc_xyz[:, 1] -
                 inFile.header.offset[1]) / inFile.header.scale[1]
    outFile.Z = (pc_xyz[:, 2] -
                 inFile.header.offset[2]) / inFile.header.scale[2]
    outFile.intensity = v_rescale
    outFile.close()
min_x = np.min(in_pc_nparray[:, 0]) + shift
max_x = np.max(in_pc_nparray[:, 0]) + shift
step_x = resolution

min_y = np.min(in_pc_nparray[:, 1]) + shift
max_y = np.max(in_pc_nparray[:, 1]) + shift
step_y = resolution

bound_x = np.arange(min_x, max_x, step_x)
bound_y = np.arange(min_y, max_y, step_y)

target_x, target_y = np.meshgrid(bound_x, bound_y, indexing='ij')

# export as XYZ pcloud

x = np.ravel(target_x)
y = np.ravel(target_y)
z = np.ones(len(x))

false_intensity = np.zeros(len(x))

out_LAS = File(filename + "_target.las", mode="w", header=in_pc.header)
out_LAS.x = x
out_LAS.y = y
out_LAS.z = z
out_LAS.intensity = false_intensity
out_LAS.close()

end1 = time.time()
difftime1 = end1 - start1
print(("create target point: %f sec") % (difftime1))
Ejemplo n.º 6
0
ky_lidar_raw_files_paths = list(ky_lidar_raw_files_path.glob("*.las"))

# How best to choose the reference tile? Maybe just choose the first one for now?
ref_tile_path = ky_lidar_raw_files_paths.pop(0)

# I don't know of a good way to mark it so that it's visible later though...
print(f"Reference tile: {ref_tile_path}")

# Open ref tile, save it as-is in the new path
ref_tile = File(ref_tile_path, mode='r')
new_tile = File(
    ky_lidar_fix_path / (ref_tile_path.stem + ref_tile_path.suffix),
    mode='w',
    header=ref_tile.header)

new_tile.intensity = ref_tile.intensity
new_tile.close()

# need a function to process a sample and save it back
def do_hm(target_tile_path):
    # load tile for matching
    target_tile_name = target_tile_path.stem + target_tile_path.suffix
    try:
        target_tile = File(target_tile_path, mode='r') # this can take some time
     
        # use global to get the info, apologize to programming teachers
        global ref_tile
        global ky_lidar_fix_path
    
        # match histograms
        new_dist = hist_match(target_tile.intensity, ref_tile.intensity)
    out_LAS.define_new_dimension(name="sum_eigenvalues" + "_" + str(k),
                                 data_type=9,
                                 description="Spatial feature")
    out_LAS.define_new_dimension(name="curvature" + "_" + str(k),
                                 data_type=9,
                                 description="Spatial feature")
    #out_LAS.define_new_dimension(name="classification"+"_"+str(k),data_type=9, description="reference")

    print(point_cloud.columns)

    out_LAS.x = point_cloud['x']
    #point_cloud.drop('x')

    out_LAS.y = point_cloud['y']
    out_LAS.z = point_cloud['z']
    out_LAS.intensity = point_cloud['intensity']
    out_LAS.return_num = point_cloud['return_number']
    #print(point_cloud["number_of_returns"])
    point_cloud["number_of_returns"] = point_cloud["number_of_returns"]
    #print(point_cloud["number_of_returns"])
    out_LAS.num_returns = point_cloud['number_of_returns']

    #Setting attributes Maybe do this with "try" ?
    setattr(out_LAS, 'delta_z' + "_" + str(k), point_cloud['delta_z'])
    #point_cloud.drop('delta_z')
    setattr(out_LAS, 'std_z' + "_" + str(k), point_cloud['std_z'])
    #point_cloud.drop('std_z')
    setattr(out_LAS, 'radius' + "_" + str(k), point_cloud['radius'])
    #point_cloud.drop('radius')
    setattr(out_LAS, 'density' + "_" + str(k), point_cloud['density'])
    #point_cloud.drop('density')