Ejemplo n.º 1
0
    def decoder(self,input_z,name = 'generate_img',is_training = True):
        hidden_num = 64
        output_dim = 64
        with tf.variable_scope(name,reuse = tf.AUTO_REUSE):

            x = ly.fc(input_z, hidden_num * 8 * (output_dim // 16) * (output_dim // 16),name = 'gen_fc_0')
            x = tf.reshape(x, shape=[self.imle_deep, output_dim // 16, output_dim // 16, hidden_num * 8]) ## 4, 4, 8*64

            x = ly.deconv2d(x,hidden_num * 4,name = 'g_deconv2d_0') ### 8,8, 256
            x = ly.batch_normal(x,name = 'g_deconv_bn_0',is_training = is_training)
            x = ly.relu(x)

            x = ly.deconv2d(x,hidden_num * 2,name = 'g_deconv2d_1') ### 16,16, 128
            x = ly.batch_normal(x,name = 'g_deconv_bn_1',is_training = is_training)
            x = ly.relu(x)

            x = ly.deconv2d(x,hidden_num,name = 'g_deconv2d_2') ### 32,32, 64
            x = ly.batch_normal(x,name = 'g_deconv_bn_2',is_training = is_training)
            x = ly.relu(x)

            x = ly.deconv2d(x, 3, name = 'g_deconv2d_3') ### 64,64, 3
            x = ly.batch_normal(x,name = 'g_deconv_bn_3',is_training = is_training)
            x = tf.nn.tanh(x)

            return x
Ejemplo n.º 2
0
    def discriminator(self,
                      x,
                      name='discriminator_img',
                      is_training=True):  ## 64,64,3
        with tf.variable_scope(name, reuse=tf.AUTO_REUSE):
            x = ly.conv2d(x, 64, strides=2, use_bias=True,
                          name='d_conv_0')  ## 32,32,64
            x = ly.batch_normal(x, name='d_bn_0', is_training=is_training)
            x = ly.relu(x, 0.2)

            x = ly.conv2d(x, 128, strides=2, use_bias=True,
                          name='d_conv_1')  ## 16,16,128
            x = ly.batch_normal(x, name='d_bn_1', is_training=is_training)
            x = ly.relu(x, 0.2)

            x = ly.conv2d(x, 256, strides=2, use_bias=True,
                          name='d_conv_2')  ## 8,8,256
            x = ly.batch_normal(x, name='d_bn_2', is_training=is_training)
            x = ly.relu(x, 0.2)

            x = ly.conv2d(x, 512, strides=2, use_bias=True,
                          name='d_conv_3')  ## 4,4,512
            x = ly.batch_normal(x, name='d_bn_3', is_training=is_training)
            x = ly.relu(x, 0.2)

            x = ly.fc(x, 1, name='fc_0')
            x = tf.nn.sigmoid(x)
            return x
Ejemplo n.º 3
0
    def __call__(self, input):
        with tf.variable_scope(self.name, reuse=self.reuse):
            input = ly.conv2d(input, 64, strides=2,
                              name='conv_0')  ## (-1,150,150,64)
            input = ly.batch_normal(input, name='bn_0')
            input = tf.nn.leaky_relu(input)

            input = ly.conv2d(input, 128, strides=2,
                              name='conv_1')  ## (-1,75,75,128)
            input = ly.batch_normal(input, name='bn_1')
            input = tf.nn.leaky_relu(input)

            input = ly.conv2d(input, 256, strides=2,
                              name='conv_2')  ## (-1,38,38,256)
            input = ly.batch_normal(input, name='bn_2')
            input = tf.nn.leaky_relu(input)

            input = ly.conv2d(input, 512, strides=2,
                              name='conv_3')  ## (-1,19,19,512)
            input = ly.batch_normal(input, name='bn_3')
            input = tf.nn.leaky_relu(input)

            print(input.shape)
            input = ly.conv2d(input, 512, strides=2,
                              name='conv_4')  ## (-1,10,10,512)
            input = ly.batch_normal(input, name='bn_4')
            input = tf.nn.leaky_relu(input)

            ## avg
            input = tf.reduce_mean(input, axis=[1, 2])
            input = tf.nn.dropout(input, keep_prob=0.5)

            input = ly.fc(input, 1, name='fc_0')
            # input = ly.batch_normal(input, name='bn_5')
            input = tf.nn.sigmoid(input)

        return input
Ejemplo n.º 4
0
    def classify(self,
                 d_opt=None,
                 name='classify',
                 is_training=True):  ### 64,64,1
        with tf.variable_scope(name, reuse=tf.AUTO_REUSE):
            x = tf.pad(self.input_img, [[0, 0], [5, 5], [5, 5], [0, 0]],
                       "REFLECT")
            x = ly.conv2d(x,
                          64,
                          kernal_size=11,
                          name='conv_0',
                          padding='VALID',
                          use_bias=True)
            x = ly.batch_normal(x, name='bn_0', is_training=is_training)
            x = ly.relu(x)

            x = ly.maxpooling2d(x)  ## 32,32,64

            x = tf.pad(x, [[0, 0], [3, 3], [3, 3], [0, 0]], "REFLECT")
            x = ly.conv2d(x,
                          128,
                          kernal_size=7,
                          name='conv_1',
                          padding='VALID',
                          use_bias=True)
            x = ly.batch_normal(x, name='bn_1', is_training=is_training)
            x = ly.relu(x)

            x = ly.maxpooling2d(x)  ## 16,16,128

            x = tf.pad(x, [[0, 0], [2, 2], [2, 2], [0, 0]], "REFLECT")
            x = ly.conv2d(x,
                          256,
                          kernal_size=5,
                          name='conv_2',
                          padding='VALID',
                          use_bias=True)
            x = ly.batch_normal(x, name='bn_2', is_training=is_training)
            x = ly.relu(x)

            x = ly.maxpooling2d(x)  ## 8,8,256

            x = tf.pad(x, [[0, 0], [1, 1], [1, 1], [0, 0]], "REFLECT")
            x = ly.conv2d(x,
                          512,
                          kernal_size=3,
                          name='conv_3',
                          padding='VALID',
                          use_bias=True)
            x = ly.batch_normal(x, name='bn_3', is_training=is_training)
            x = ly.relu(x)

            x = tf.pad(x, [[0, 0], [1, 1], [1, 1], [0, 0]], "REFLECT")
            x = ly.conv2d(x,
                          512,
                          kernal_size=3,
                          name='conv_4',
                          padding='VALID',
                          use_bias=True)
            x = ly.batch_normal(x, name='bn_4', is_training=is_training)
            x = ly.relu(x)

            x = ly.maxpooling2d(x)  ## 4,4,512

            x = ly.fc(x, 1024, name='fc_0', use_bias=True)
            x = ly.batch_normal(x, name='bn_5', is_training=is_training)
            x = ly.relu(x)
            x = tf.nn.dropout(x, keep_prob=0.5)

            x = ly.fc(x, self.class_num, name='fc_1', use_bias=True)
            self.pred_x_index = tf.argmax(tf.nn.softmax(x), axis=-1)
            self.pred_x_value = tf.reduce_max(tf.nn.softmax(x), axis=-1)

            if (is_training):
                cross_loss = tf.reduce_mean(
                    tf.nn.softmax_cross_entropy_with_logits_v2(
                        labels=self.input_label, logits=x),
                    axis=0)
                l2_loss = 0.0005 * tf.reduce_sum([
                    tf.nn.l2_loss(var)
                    for var in self.get_single_var('classify/fc')
                ])
                loss = cross_loss + l2_loss
                self.summaries.append(tf.summary.scalar('loss', loss))

                _grad = d_opt.compute_gradients(
                    loss, var_list=self.get_vars('classify'))
                train_op = d_opt.apply_gradients(_grad)

                return train_op
Ejemplo n.º 5
0
    def __call__(self, input):
        with tf.variable_scope(self.name, reuse=self.reuse):
            input = ly.conv2d(input,
                              64,
                              kernel_size=7,
                              strides=1,
                              name='g_conv2d_0')
            input = ly.batch_normal(input, name='g_bn_0')
            input = tf.nn.relu(input)

            input = ly.conv2d(input,
                              128,
                              kernel_size=3,
                              strides=2,
                              name='g_conv2d_1')
            input = ly.batch_normal(input, name='g_bn_1')
            input = tf.nn.relu(input)

            input = ly.conv2d(input,
                              256,
                              kernel_size=3,
                              strides=2,
                              name='g_conv2d_2')
            input = ly.batch_normal(input, name='g_bn_2')
            input = tf.nn.relu(input)

            ### resnet
            for i in range(8):
                cell = ly.conv2d(input,
                                 256,
                                 kernel_size=3,
                                 strides=1,
                                 name='g_conv2d_res_%s' % i)
                cell = ly.batch_normal(cell, name='g_res_%s' % i)
                cell = tf.nn.relu(cell)
                input = cell

            input = ly.deconv2d(input,
                                kernel_size=3,
                                strides=2,
                                name='g_deconv2d_0')
            input = ly.batch_normal(input, name='g_bn_3')
            input = tf.nn.relu(input)

            input = ly.deconv2d(input,
                                kernel_size=3,
                                strides=2,
                                name='g_deconv2d_1')
            input = ly.batch_normal(input, name='g_bn_4')
            input = tf.nn.relu(input)

            input = ly.conv2d(input,
                              3,
                              kernel_size=7,
                              strides=1,
                              name='g_conv2d_3')
            input = ly.batch_normal(input, name='g_bn_5')
            input = tf.nn.tanh(input)

            input = tf.image.resize_images(input, (299, 299))
        return input  ## (-1,28,28,1)