Ejemplo n.º 1
0
def mapNtoDD_left_s0(lo, ld, g, c, s0=()):
    no = lo.n
    nd = ld.n
    Kpd = ly.layerpotSD(s=ld)
    Kpo = ly.layerpotSD(s=lo)
    Kpd[np.diag_indices(nd)] = Kpd[np.diag_indices(nd)] + 0.5 * c
    Kpo[np.diag_indices(no)] = Kpo[np.diag_indices(no)] + 0.5
    Kd2o = ly.layerpotSD(s=ld, t=lo)
    Ko2d = ly.layerpotSD(s=lo, t=ld)

    row1 = np.concatenate((Kpo.T, Kd2o.T)).T
    row2 = np.concatenate((Ko2d.T, Kpd.T)).T
    # row1 = lo.SL.T.dot(row1)
    Ks = np.concatenate((row1, row2))

    if g.ndim == 1:
        gz = np.concatenate((lo.SL.T.dot(g), np.zeros(nd)))
    elif g.ndim == 2:
        nt = g.shape[1]
        gz = np.concatenate((lo.SL.T.dot(g), np.zeros((nd, nt))))
    if setups.mapNtoD_left == False:
        if g.ndim == 1:
            gz = np.concatenate((g, np.zeros(nd)))
        elif g.ndim == 2:
            nt = g.shape[1]
            gz = np.concatenate((g, np.zeros((nd, nt))))

    gz[0] = 0
    Ks[0, :no] = lo.s0
    Ks[0, no:] = 0

    phi = linalg.lstsq(Ks, gz)[0]
    # (lu, piv) = linalg.lu_factor(Ks)
    # phi = linalg.lu_solve((lu, piv), gz)
    return phi
Ejemplo n.º 2
0
def mapNtoDD0(lo, ld, g, c, s0):
    no = lo.n
    nd = ld.n
    # --- matrix: shape = (lo.n + ld.n, lo.n + ld.n) ---
    Kpd = ly.layerpotSD(s=ld)
    Kpo = ly.layerpotSD(s=lo)
    Kpd[np.diag_indices(nd)] = Kpd[np.diag_indices(nd)] + 0.5 * c
    Kpo[np.diag_indices(no)] = Kpo[np.diag_indices(no)] + 0.5
    Kd2o = ly.layerpotSD(s=ld, t=lo)
    Ko2d = ly.layerpotSD(s=lo, t=ld)

    row1 = np.concatenate((Kpo.T, Kd2o.T)).T
    row2 = np.concatenate((Ko2d.T, Kpd.T)).T
    Ks = np.concatenate((row1, row2))
    if verbose:
        print(dbgg.CYAN, end='')
        print('  condition num = %.5e' %
              numpy.linalg.cond(np.array(Ks, float)))
        print('  determninant= ', numpy.linalg.det(np.array(Ks, float)))
        print(dbgg.RESET, end='')

    # --- rhs: [g, 0] with shape = (lo.n + ld.n) ---
    if g.ndim == 1:
        gz = np.concatenate((g, np.zeros(nd)))
    elif g.ndim == 2:
        nt = g.shape[1]
        gz = np.concatenate((g, np.zeros((nd, nt))))
    # --- linear system resolution : () * phi = g ---
    phi = linalg.lstsq(Ks, gz)[0]
    return phi
Ejemplo n.º 3
0
def mapNtoDD_correctedinfirst(lo, ld, g, c, s0):
    no = lo.n
    nd = ld.n
    Kpd = ly.layerpotSD(s=ld)
    Kpo = ly.layerpotSD(s=lo)
    Kpd[np.diag_indices(nd)] = Kpd[np.diag_indices(nd)] + 0.5 * c
    Kpo[np.diag_indices(no)] = Kpo[np.diag_indices(no)] + 0.5
    Kd2o = ly.layerpotSD(s=ld, t=lo)
    Ko2d = ly.layerpotSD(s=lo, t=ld)

    row1 = np.concatenate((Kpo.T, Kd2o.T)).T
    row2 = np.concatenate((Ko2d.T, Kpd.T)).T
    Ks = np.concatenate((row1, row2))

    if verbose:
        print('mapNtoD condition num = %.5e' %
              numpy.linalg.cond(np.array(Ks, float)))
        print('mapNtoD determninant= ', numpy.linalg.det(np.array(Ks, float)))

    if g.ndim == 1:
        gz = np.concatenate((g, np.zeros(nd)))
    elif g.ndim == 2:
        nt = g.shape[1]
        gz = np.concatenate((g, np.zeros((nd, nt))))

    mean_reduced = lo.w[1:].dot(gz[1:no]) / lo.w[0]
    gz[0] = -mean_reduced

    phi = linalg.lstsq(Ks, gz)[0]
    # (lu, piv) = linalg.lu_factor(Ks)
    # phi = linalg.lu_solve((lu, piv), gz)
    return phi
Ejemplo n.º 4
0
def mapNtoD(lo, ld, g, c, s0=()):
    print("!! not revisioned !!")
    # ---------------------------------------------------
    # --- building matrix ---
    no = lo.n
    nd = ld.n
    Kpd = ly.layerpotSD(s=ld)
    Kpo = ly.layerpotSD(s=lo)
    Kpd[np.diag_indices(nd)] = Kpd[np.diag_indices(nd)] + 0.5 * c
    Kpo[np.diag_indices(no)] = Kpo[np.diag_indices(no)] + 0.5
    Kd2o = ly.layerpotSD(s=ld, t=lo)
    Ko2d = ly.layerpotSD(s=lo, t=ld)
    # ---------------------------------------------------

    if s0 == ():
        s0 = np.ones(no)
    S = linf.gramschmidt(s0=s0)
    Kpo = Kpo.dot(S)
    Ko2d = Ko2d.dot(S)

    row1 = np.concatenate((Kpo.T, Kd2o.T)).T
    row2 = np.concatenate((Ko2d.T, Kpd.T)).T
    Ks = np.concatenate((lo.SL.T.dot(row1), row2))
    # Ks = np.concatenate(( row1, row2 ))
    Ks1 = Ks[1::, 1::]
    if verbose:
        print('  not true matrix (to fix)')
        print(dbgg.CYAN, end='')
        print('  condition num = %.5e' %
              numpy.linalg.cond(np.array(Ks, float)))
        print('  determinant   = %.5e' % numpy.linalg.det(np.array(Ks, float)))
        print(dbgg.RESET, end='')
    (lu, piv) = linalg.lu_factor(Ks1)
    if g.ndim == 1:
        gs = np.concatenate((lo.SL.T.dot(g), np.zeros(nd)))
        # gs = np.concatenate(( g, np.zeros(nd) ))
        gs1 = gs[1::]
        phi1 = linalg.lu_solve((lu, piv), gs1)
        if verbose:
            print('  residual = ', numpy.linalg.norm(Ks1.dot(phi1) - gs1))
            print('  residual2 = ',
                  numpy.linalg.norm(row2[:, 1::].dot(phi1) - gs1[-nd::]))
        phi = np.concatenate(([0], phi1))
    elif g.ndim == 2:
        nt = g.shape[1]
        gs = np.concatenate((lo.SL.T.dot(g), np.zeros((nd, nt))))
        # gs = np.concatenate(( g, np.zeros((nd, nt)) ))
        gs1 = gs[1::]
        # gs2t = gs2.T
        # phi2 = np.empty((nt, no + nd - 1))
        # for k in range(nt):
        #   phi2[k] = linalg.lu_solve((lu, piv), gs2t[k])
        #   time.sleep(0.001)
        # phi2 = phi2.T
        phi1 = linalg.lu_solve((lu, piv), gs1)
        phi = np.concatenate((np.zeros((1, nt)), phi1))
    else:
        print('Error dimensions for gs1 in mapNtoD')
    return np.concatenate((S.dot(phi[0:no]), phi[no::]))
Ejemplo n.º 5
0
    def __init__(self, pieces=[], more=0):
        self.pc = pieces
        self.s = pieces
        self.n = sum([len(pk.x) for pk in self.pc])
        self.x = np.array([z for p in pieces for z in p.x])
        self.nx = np.array([nx for p in pieces for nx in p.nx])
        self.speed = np.array([sp for p in pieces
                               for sp in p.speed]) * len(pieces)
        self.kappa = np.array([k for p in pieces for k in p.kappa])
        self.w = np.array([w for p in pieces for w in p.w])
        self.condc = np.array([c for p in pieces for c in p.condc])
        # else: # no itial position
        #   self.n = sum([len(pk.x) for pk in self.pc]) - len(pieces)
        #   self.x = np.array([z for p in pieces for z in p.x])
        #   self.nx = np.array([nx for p in pieces for nx in p.nx])
        #   self.speed = np.array([sp for p in pieces for sp in p.speed])
        #   self.kappa = np.array([k for p in pieces for k in p.kappa])
        #   self.w = np.array([w for p in pieces for w in p.w])

        # # miscellaneous
        if more:
            print("# Boundary.__init__ : more = 1")
            K = ly.layerpotSD(s=self)
            nu, s0 = linf.eigmaxpower(K)

            self.s0 = s0
            self.S = linf.gramschmidt(s0=s0)
            # self.Sw = linf.gramschmidtw(s=self, s0=s0)
            self.SL = linf.gramschmidt(s0=self.w)
            # self.B = linf.gramschmidtw(s=self, s0=np.ones(self.n))
            self.B = linf.gramschmidt(s0=np.ones(self.n))

            self.BX, self.BXinv = get_Basis(self.n)
            self.BY, self.BYinv = get_Basis(self.n)
Ejemplo n.º 6
0
def mapNtoD0_left_s0(l, g, s0=()):
    '''
  This function computes interior laplace problem with neumann data
    - l: segment or boundary of the region where there are data
    - g: neumann data
    
      (Kp + 0.5 I) * phi = g
  '''
    n = l.n
    # --- matrix ---
    Kp = ly.layerpotSD(s=l)
    Kp[np.diag_indices(n)] = Kp[np.diag_indices(n)] + 0.5
    if verbose:
        print(dbgg.CYAN, end='')
        print('  condition num = %.5e' %
              numpy.linalg.cond(np.array(Kp, float)))
        print('  determinant   = %.5e' % numpy.linalg.det(np.array(Kp, float)))
        print(dbgg.RESET, end='')

    Kps = l.SL.T.dot(Kp)
    # --- rhs ---
    gs = l.SL.T.dot(g)

    # --- correction s0 in first line ---
    gs[0] = 0
    Kps[0, :] = l.s0  # potrebbe essere anche l.w ? vedi vecchio func_left in vecchio script

    # --- linear system resolution : (Kp + 0.5 I) * phi = g ---
    phi = linalg.lstsq(Kps, gs)[0]
    if verbose and gs.ndim == 1:
        print('  residual', max(abs(np.array(Kps.dot(phi) - gs))))
    return phi
Ejemplo n.º 7
0
def mapNtoD0_left(l, g, s0=()):
    '''
  This function computes interior laplace problem with neumann data
    - l: segment or boundary of the region where there are data
    - g: neumann data
    
      (Kp + 0.5 I) * phi = g
  '''
    n = l.n
    # --- matrix ---
    Kp = ly.layerpotSD(s=l)
    Kp[np.diag_indices(n)] = Kp[np.diag_indices(n)] + 0.5
    if verbose:
        print(dbgg.CYAN, end='')
        print('  condition num = %.5e' %
              numpy.linalg.cond(np.array(Kp, float)))
        print('  determinant   = %.5e' % numpy.linalg.det(np.array(Kp, float)))
        print(dbgg.RESET, end='')

    Kps = l.SL.T.dot(Kp)
    # --- rhs ---
    gs = l.SL.T.dot(g)

    # --- linear system resolution : (Kp + 0.5 I) * phi = g ---
    phi = linalg.lstsq(Kps, gs)[0]
    print("  g ndim =", gs.shape)
    if verbose and gs.ndim == 1:
        print('  residual', max(abs(np.array(Kps.dot(phi) - gs))))
    return phi
Ejemplo n.º 8
0
def mapNtoD00(l, g, s0=()):
    '''
  This function computes interior laplace problem with neumann data
    - l: segment or boundary of the region where there are data
    - g: neumann data

      (Kp + 0.5 I) * phi = g 
  '''
    n = l.n
    # --- matrix ---
    Kp = ly.layerpotSD(s=l)
    Kp[np.diag_indices(n)] = Kp[np.diag_indices(n)] + 0.5
    if verbose:
        print(dbgg.CYAN, end='')
        print('  condition num = %.5e' %
              numpy.linalg.cond(np.array(Kp, float)))
        print('  determinant   = %.5e' % numpy.linalg.det(np.array(Kp, float)))
        print(dbgg.RESET, end='')

    # --- rhs ---
    # --- linear system resolution : (Kp + 0.5 I) * phi = g ---
    phi = linalg.lstsq(Kp, g)[0]
    # (lu, piv) = linalg.lu_factor(Kp)
    # phi = linalg.lu_solve((lu, piv), g)
    return phi
Ejemplo n.º 9
0
def mapNtoD0(l, g, s0=()):
    print("!! not revisioned !!")
    print(g.shape)
    # ---------------------------------------------------
    # --- building matrix ---
    n = l.n
    Kp = ly.layerpotSD(s=l)
    Kp[np.diag_indices(n)] = Kp[np.diag_indices(n)] + 0.5
    # ---------------------------------------------------
    if verbose:
        print(dbgg.CYAN, end='')
        print('  condition num = %.5e' %
              numpy.linalg.cond(np.array(Kp, float)))
        print('  determinant   = %.5e' % numpy.linalg.det(np.array(Kp, float)))
        print(dbgg.RESET, end='')
    if s0 == ():
        s0 = np.ones(n)
    S = l.S
    # Kps = S.T.dot(Kp.dot(S))
    Kps = l.SL.T.dot(Kp.dot(S))
    Kps1 = Kps[1::, 1::]

    # gs = S.T.dot(g)
    gs = l.SL.T.dot(g)
    gs1 = gs[1::]

    # phi2 = linalg.solve(Kps2, gs2)
    (lu, piv) = linalg.lu_factor(Kps1)
    if gs1.ndim == 1:
        phi1 = linalg.lu_solve((lu, piv), gs1)
        # phi1 = linalg.lstsq(Kps1, gs1)[0]
        phi = np.concatenate(([0], phi1))
        if verbose:
            print('residual = ', numpy.linalg.norm(Kps1.dot(phi1) - gs1))
    elif gs1.ndim == 2:
        nt = g.shape[1]
        # gs2t = gs2.T
        # phi2 = np.empty((len(gs2t), n - 1 ))
        # for k in range(len(gs2t)):
        #   phi2[k] = linalg.lu_solve((lu, piv), gs2t[k])
        #   time.sleep(0.001)
        # phi2 = phi2.T
        phi1 = linalg.lu_solve((lu, piv), gs1)
        # phi1 = linalg.lstsq(Kps1, gs1)[0]
        phi = np.concatenate((np.zeros((1, nt)), phi1))
    else:
        print(' Error: dimensions for gs in mapNtoD0')
    # phi2 = scipy.sparse.linalg.cg(Kps2, gs2)[0]

    # phi = linalg.solve(Kps, gs) # check error
    return S.dot(phi)
Ejemplo n.º 10
0
def computeLLdiff(ld, so, T, c):
    if T == ():
        T = so.BX
    allpsi0 = dpb.mapNtoD0(so, T, so.s0)
    Lo = ly.layerpotSD(s=so, t=ld)
    rhsdiff = Lo.dot(allpsi0)
    allpsi = dpb.mapNtoDdiff(so, ld, rhsdiff, c, so.s0)
    Lo = ly.layerpotS(s=so)
    Ld = ly.layerpotS(s=ld, t=so)
    L = Lo.dot(allpsi[0:so.n]) + Ld.dot(allpsi[so.n::])
    # means = sum(np.diagflat(so.w).dot(L)) / sum(so.w) # correct? strange sum by rows
    means = np.ones(so.n).dot(np.diagflat(so.w).dot(L)) / sum(so.w)
    L = L - np.array([means for k in range(so.n)])
    return L
Ejemplo n.º 11
0
def computeU(allpsi, ld, so, sb):
    kerS = ly.layerpotS(s=ld, t=so)
    kerSD = ly.layerpotSD(s=ld, t=so)

    U_psi = kerS.dot(allpsi)
    U_psi_nu = kerSD.dot(allpsi)

    U_psi = U_psi.T.dot(np.diag(so.w))
    U_psi_nu = U_psi_nu.T.dot(np.diag(so.w))

    U = ly.layerpotS(s=so, t=sb)
    U_nu = ly.layerpotD(s=so, t=sb)

    U = U + U_psi
    U_nu = U_nu + U_psi_nu
    return (U, U_nu)
Ejemplo n.º 12
0
def computeR(allpsi, ld, so, sb, sv=(), testset=1):
    if sv == ():
        sv = sb
    nso, nsb = so.n, sb.n

    U, U_nu = computeU(allpsi, ld, so, sb)

    testset = 1
    if testset == 1 or testset == 3:
        V1 = ly.layerpotS(s=sv, t=so)
        V1_nu = ly.layerpotSD(s=sv, t=so)
        R1 = U.dot(V1_nu) - U_nu.dot(V1)
        R = R1
    if testset == 2 or testset == 3:
        V2 = ly.layerpotD(s=sv, t=so)
        V2_nu = ly.layerpotDD(s=sv, t=so)
        R2 = U.dot(V2_nu) - U_nu.dot(V2)
        R = R2
    if testset == 3:
        R = np.concatenate((R1.T, R2.T)).T
    if verbose:
        print('  R.shape = ', R.shape)
    return (R, U, U_nu)
Ejemplo n.º 13
0
    def __init__(self,
                 n,
                 Z_args=((), (), (), ()),
                 f_inargs=((), ()),
                 quad='ps',
                 aff=(0, 1),
                 sign=1,
                 more=1,
                 h=2.0):
        '''
      This constructor initializes these fields
      - x:     (complex = R^2) curve points
      - dx:    (complex = R^2) curve derivative = tangent unit vect * speed
      - speed: (complex = R^2) curve speed
      Quadrature
      - 'p':  periodic
      - 'ps': periodic shifted, meaning all points are shifted by half step
      - 'gf': graded full (with initial point)
    '''
        # in vecchie versioni c'era una diversa ipotesi di costruttore (vedi parametri)
        Z, Zp, Zpp, args = Z_args
        f, inargs = f_inargs
        if f != () and f != ():
            (Z, Zp, Zpp, args) = f(*inargs)
        # -------------------------------------------------------------------
        # ------------------- Quadrature: t ---------------------------------
        if quad == 'p' or quad == 'ps':
            self.t = np.array([float(k) / n for k in range(n)], float)
            if quad == 'ps':
                self.t = self.t + 1. / 2 / n
        elif quad == 'gp' or quad == 'g' or quad == 'gf':
            temp_s = np.array([float(k) / n for k in range(n)], float)
            if quad == 'gf':
                pass
            else:
                # no initial point with w=0
                temp_s = temp_s[1:]
                n = n - 1
            #
            self.t = graded.w(2.0 * pi * temp_s) / 2 / pi
            self.a = graded.wp(2.0 * pi * temp_s)
        else:
            self.t = np.array([float(k) / (n - 1) for k in range(n)], float)
        # -------------------------------------------------------------------
        # trapezoidal nodes
        self.n = n
        self.x = np.array([Z(t, *args, aff=aff) for t in self.t], np.cfloat)

        self.dx = np.array([Zp(t, *args, aff=aff) for t in self.t], np.cfloat)
        self.speed = np.array(abs(self.dx), float)
        self.nx = np.array(-1j * self.dx / self.speed, np.cfloat) * sign

        self.ddx = np.array([Zpp(t, *args, aff=aff) for t in self.t],
                            np.cfloat)
        # s.kappa = -real(conj(-1i*dZdt).*s.Zpp(s.t)) ./ s.speed.^3; %curvature
        self.kappa = -np.real(np.conj(-1j * self.dx) * self.ddx) / (
            self.speed**3)  # signed curvature
        # -------------------------------------------------------------------
        # ------------------- Quadrature: w ---------------------------------
        if quad == 'p' or quad == 'ps':
            self.w = np.array([sp / n for sp in self.speed], float)
        elif quad == 'gp' or quad == 'g' or quad == 'gf':
            self.speed = self.speed * self.a
            # self.w = np.array([sp / (n) for sp in self.speed], float)
            if quad == 'gp' or quad == 'g':
                self.w = np.array([sp / (n + 1) for sp in self.speed], float)
                print('graded mesh in segment, n = ', n, ' w.size =',
                      self.w.size)
            elif quad == 'gf':
                self.w = np.array([sp / n for sp in self.speed], float)
                print('graded FULL mesh in segment, n = ', n, ' w.size =',
                      self.w.size)
            # self.w = np.array([sp / n for sp in self.speed], float) * self.a
        else:
            self.w = np.array([sp / (n - 1) for sp in self.speed], float)
            self.w[0] = self.w[0] * 0.5
            self.w[-1] = self.w[-1] * 0.5
        # -------------------------------------------------------------------
        # -------------------------------------------------------------------
        # miscellaneous
        if more:
            K = ly.layerpotSD(s=self)
            nu, s0 = linf.eigmaxpower(
                K
            )  # eigenvector with  max. modulus eigenvalues: it's density which makes constant simple layer

            self.s0 = s0
            self.S = linf.gramschmidt(s0=s0)  #
            # self.Sw = linf.gramschmidtw(s=self, s0=s0)
            self.SL = linf.gramschmidt(s0=self.w)  #
            # self.B = linf.gramschmidtw(s=self, s0=np.ones(self.n))
            # self.B = linf.gramschmidt(s0=np.ones(self.n))
            self.BT = get_basis_trigonometric(self.n)

            self.BX, self.BXinv = get_Basis(self.n)
            self.BY, self.BYinv = get_Basis(self.n)
        # -------------------------------------------------------------------
        condc = const_from_conductivity(h)
        self.condc = np.array([condc for t in self.t], np.cfloat)
        # ---- save properties ----------------------------------------------
        self.name = f_inargs[0]
        self.params = f_inargs[1]
        self.aff = aff
        return  # __init__