Ejemplo n.º 1
0
    def __init__(self, opt):
        super(QMultiTask, self).__init__()
        self.device = opt.device
        self.input_dims = opt.input_dims
        self.total_input_dim = sum(self.input_dims)
        self.embed_dim = opt.embed_dim
        self.speaker_num = opt.speaker_num
        self.dataset_name = opt.dataset_name
        self.features = opt.features

        # MELD data
        # The one-hot vectors are not the global user ID
        if self.dataset_name.lower() == 'meld':
            self.speaker_num = 1
        self.n_classes_emo = opt.output_dim_emo
        self.n_classes_act = opt.output_dim_act

        self.projections = nn.ModuleList(
            [nn.Linear(dim, self.embed_dim) for dim in self.input_dims])

        self.multiply = ComplexMultiply()
        self.outer = QOuter()
        self.norm = L2Norm(dim=-1)
        self.mixture = QMixture(device=self.device)
        self.output_cell_dim = opt.output_cell_dim
        self.phase_embeddings = nn.ModuleList([
            PositionEmbedding(
                self.embed_dim, input_dim=self.speaker_num, device=self.device)
        ] * len(self.input_dims))
        self.out_dropout_rate = opt.out_dropout_rate

        self.measurement_emotion = QMeasurement(self.embed_dim)
        self.measurement_act = QMeasurement(self.embed_dim)

        self.fc_out_emo = SimpleNet(self.embed_dim,
                                    self.output_cell_dim,
                                    self.out_dropout_rate,
                                    self.n_classes_emo,
                                    output_activation=nn.Tanh())

        self.fc_out_act = SimpleNet(self.embed_dim,
                                    self.output_cell_dim,
                                    self.out_dropout_rate,
                                    self.n_classes_act,
                                    output_activation=nn.Tanh())

        self.num_layers = opt.num_layers
        #self.rnn=nn.ModuleList([QRNNCell(self.embed_dim, device = self.device)]*self.num_layers)
        self.RNNs = nn.ModuleList([
            QRNN(self.embed_dim, self.device, self.num_layers)
            for i in range(len(opt.features))
        ])
        self.rnn_outer = QOuter()

        self.action_qrnn = QRNN(self.embed_dim, self.device, self.num_layers)
Ejemplo n.º 2
0
    def __init__(self, opt):
        super(QMPN, self).__init__()
        self.device = opt.device
        self.input_dims = opt.input_dims
        self.total_input_dim = sum(self.input_dims)

        if type(opt.embed_dims) == int:
            self.embed_dims = [opt.embed_dims]
        self.embed_dims = [int(s) for s in opt.embed_dims.split(',')]

        self.speaker_num = opt.speaker_num
        self.dataset_name = opt.dataset_name

        # MELD data
        # The one-hot vectors are not the global user ID
        if self.dataset_name.lower() == 'meld':
            self.speaker_num = 1
        self.n_classes = opt.output_dim
        self.projections = nn.ModuleList([
            nn.Linear(dim, embed_dim)
            for dim, embed_dim in zip(self.input_dims, self.embed_dims)
        ])

        self.multiply = ComplexMultiply()
        self.outer = QOuter()
        self.norm = L2Norm(dim=-1)
        self.mixture = QMixture(device=self.device)
        self.output_cell_dim = opt.output_cell_dim
        self.phase_embeddings = nn.ModuleList([
            PositionEmbedding(embed_dim,
                              input_dim=self.speaker_num,
                              device=self.device)
            for embed_dim in self.embed_dims
        ])
        self.out_dropout_rate = opt.out_dropout_rate
        self.num_layers = opt.num_layers
        self.state_product = QProduct()
        self.recurrent_dim = 1
        for embed_dim in self.embed_dims:
            self.recurrent_dim = self.recurrent_dim * embed_dim
        self.recurrent_cells = nn.ModuleList(
            [QRNNCell(self.recurrent_dim, device=self.device)] *
            self.num_layers)
        self.out_dropout = QDropout(p=self.out_dropout_rate)
        self.activation = QActivation(scale_factor=1, beta=0.8)

        self.measurement = QMeasurement(self.recurrent_dim)
        self.fc_out = SimpleNet(self.recurrent_dim,
                                self.output_cell_dim,
                                self.out_dropout_rate,
                                self.n_classes,
                                output_activation=nn.Tanh())
Ejemplo n.º 3
0
    def __init__(self, opt):
        super(QAttN, self).__init__()
        self.device = opt.device
        self.input_dims = opt.input_dims
        self.total_input_dim = sum(self.input_dims)
        self.embed_dim = opt.embed_dim
        self.speaker_num = opt.speaker_num
        self.n_classes = opt.output_dim
        self.output_cell_dim = opt.output_cell_dim
        self.dataset_name = opt.dataset_name

        self.projections = nn.ModuleList(
            [nn.Linear(dim, self.embed_dim) for dim in self.input_dims])
        if self.dataset_name.lower() == 'meld':
            self.speaker_num = 1
        self.multiply = ComplexMultiply()
        self.outer = QOuter()
        self.norm = L2Norm(dim=-1)
        self.mixture = QMixture(device=self.device)
        self.phase_embeddings = nn.ModuleList([
            PositionEmbedding(self.embed_dim, input_dim=1, device=self.device)
        ] * len(self.input_dims))
        self.out_dropout_rate = opt.out_dropout_rate
        self.attention = QAttention()
        self.num_modalities = len(self.input_dims)
        #self.out_dropout = QDropout(p=self.out_dropout_rate)

        #self.dense = QDense(self.embed_dim, self.n_classes)
        self.measurement_type = opt.measurement_type
        if opt.measurement_type == 'quantum':
            self.measurement = QMeasurement(self.embed_dim)
            self.fc_out = SimpleNet(self.embed_dim * self.num_modalities,
                                    self.output_cell_dim,
                                    self.out_dropout_rate,
                                    self.n_classes,
                                    output_activation=nn.Tanh())

        else:
            self.measurement = ComplexMeasurement(self.embed_dim *
                                                  self.num_modalities,
                                                  units=20)
            self.fc_out = SimpleNet(20,
                                    self.output_cell_dim,
                                    self.out_dropout_rate,
                                    self.n_classes,
                                    output_activation=nn.Tanh())
Ejemplo n.º 4
0
    def __init__(self, opt):
        super(QMNAblation, self).__init__()
        self.device = opt.device
        self.input_dims = opt.input_dims
        self.total_input_dim = sum(self.input_dims)
        self.embed_dim = opt.embed_dim
        self.speaker_num = opt.speaker_num
        self.dataset_name = opt.dataset_name

        # MELD data
        if self.dataset_name.lower() == 'meld':
            self.speaker_num = 1
        self.n_classes = opt.output_dim
        self.input_concat = opt.input_concat
        self.zero_phase = opt.zero_phase
        self.measurement_type = opt.measurement_type
        self.classical_recurrent = opt.classical_recurrent
        self.quantum_recurrent = opt.quantum_recurrent

        if self.input_concat:
            self.projections = nn.ModuleList(
                [nn.Linear(self.total_input_dim, self.embed_dim)])

        elif self.classical_recurrent:
            self.projections = nn.ModuleList(
                [nn.GRU(dim, self.embed_dim, 1) for dim in self.input_dims])
        else:
            self.projections = nn.ModuleList(
                [nn.Linear(dim, self.embed_dim) for dim in self.input_dims])

        self.multiply = ComplexMultiply()
        self.outer = QOuter()
        self.norm = L2Norm(dim=-1)
        self.mixture = QMixture(device=self.device)
        self.output_cell_dim = opt.output_cell_dim
        self.phase_embeddings = nn.ModuleList([PositionEmbedding(self.embed_dim, input_dim = self.speaker_num,\
                                                                 zero_phase = self.zero_phase, device = self.device)]*len(self.input_dims))

        self.out_dropout_rate = opt.out_dropout_rate
        self.num_layers = opt.num_layers
        self.recurrent_cells = nn.ModuleList(
            [QRNNCell(self.embed_dim, device=self.device)] * self.num_layers)
        self.out_dropout = QDropout(p=self.out_dropout_rate)
        self.activation = QActivation(scale_factor=1, beta=0.8)

        self.measurement_type = opt.measurement_type
        if self.measurement_type == 'quantum':
            self.measurement = QMeasurement(self.embed_dim)
            self.fc_out = SimpleNet(self.embed_dim,
                                    self.output_cell_dim,
                                    self.out_dropout_rate,
                                    self.n_classes,
                                    output_activation=nn.Tanh())

        elif self.measurement_type == 'flatten':
            self.fc_out = SimpleNet(self.embed_dim,
                                    self.output_cell_dim,
                                    self.out_dropout_rate,
                                    self.n_classes,
                                    output_activation=nn.Tanh())
        else:
            self.measurement = ComplexMeasurement(self.embed_dim,
                                                  units=self.embed_dim)
            self.fc_out = SimpleNet(self.embed_dim,
                                    self.output_cell_dim,
                                    self.out_dropout_rate,
                                    self.n_classes,
                                    output_activation=nn.Tanh())