Ejemplo n.º 1
0
def build_model(input_layer=None):

    #################
    # Regular model #
    #################
    input_size = data_sizes["sliced:data:singleslice"]

    if input_layer:
        l0 = input_layer
    else:
        l0 = nn.layers.InputLayer(input_size)

    # Reshape to framemodel
    l0_slices = nn.layers.ReshapeLayer(l0, (-1, 1, [2], [3]))

    l1a = nn.layers.dnn.Conv2DDNNLayer(l0_slices,
                                       W=nn.init.Orthogonal("relu"),
                                       filter_size=(3, 3),
                                       num_filters=16,
                                       stride=(1, 1),
                                       pad="same",
                                       nonlinearity=nn.nonlinearities.rectify)
    l1b = nn.layers.dnn.Conv2DDNNLayer(l1a,
                                       W=nn.init.Orthogonal("relu"),
                                       filter_size=(3, 3),
                                       num_filters=16,
                                       stride=(1, 1),
                                       pad="same",
                                       nonlinearity=nn.nonlinearities.rectify)
    l1 = nn.layers.dnn.MaxPool2DDNNLayer(l1b, pool_size=(2, 2), stride=(2, 2))

    l2a = nn.layers.dnn.Conv2DDNNLayer(l1,
                                       W=nn.init.Orthogonal("relu"),
                                       filter_size=(3, 3),
                                       num_filters=32,
                                       stride=(1, 1),
                                       pad="same",
                                       nonlinearity=nn.nonlinearities.rectify)
    l2b = nn.layers.dnn.Conv2DDNNLayer(l2a,
                                       W=nn.init.Orthogonal("relu"),
                                       filter_size=(3, 3),
                                       num_filters=32,
                                       stride=(1, 1),
                                       pad="same",
                                       nonlinearity=nn.nonlinearities.rectify)
    l2 = nn.layers.dnn.MaxPool2DDNNLayer(l2b, pool_size=(2, 2), stride=(2, 2))

    l3a = nn.layers.dnn.Conv2DDNNLayer(l2,
                                       W=nn.init.Orthogonal("relu"),
                                       filter_size=(3, 3),
                                       num_filters=64,
                                       stride=(1, 1),
                                       pad="same",
                                       nonlinearity=nn.nonlinearities.rectify)
    l3b = nn.layers.dnn.Conv2DDNNLayer(l3a,
                                       W=nn.init.Orthogonal("relu"),
                                       filter_size=(3, 3),
                                       num_filters=64,
                                       stride=(1, 1),
                                       pad="same",
                                       nonlinearity=nn.nonlinearities.rectify)
    l3c = nn.layers.dnn.Conv2DDNNLayer(l3b,
                                       W=nn.init.Orthogonal("relu"),
                                       filter_size=(3, 3),
                                       num_filters=64,
                                       stride=(1, 1),
                                       pad="same",
                                       nonlinearity=nn.nonlinearities.rectify)
    l3 = nn.layers.dnn.MaxPool2DDNNLayer(l3c, pool_size=(2, 2), stride=(2, 2))

    l4a = nn.layers.dnn.Conv2DDNNLayer(l3,
                                       W=nn.init.Orthogonal("relu"),
                                       filter_size=(3, 3),
                                       num_filters=128,
                                       stride=(1, 1),
                                       pad="same",
                                       nonlinearity=nn.nonlinearities.rectify)
    l4b = nn.layers.dnn.Conv2DDNNLayer(l4a,
                                       W=nn.init.Orthogonal("relu"),
                                       filter_size=(3, 3),
                                       num_filters=128,
                                       stride=(1, 1),
                                       pad="same",
                                       nonlinearity=nn.nonlinearities.rectify)
    l4c = nn.layers.dnn.Conv2DDNNLayer(l4b,
                                       W=nn.init.Orthogonal("relu"),
                                       filter_size=(3, 3),
                                       num_filters=128,
                                       stride=(1, 1),
                                       pad="same",
                                       nonlinearity=nn.nonlinearities.rectify)
    l4 = nn.layers.dnn.MaxPool2DDNNLayer(l4c, pool_size=(2, 2), stride=(2, 2))

    l5a = nn.layers.dnn.Conv2DDNNLayer(l4,
                                       W=nn.init.Orthogonal("relu"),
                                       filter_size=(3, 3),
                                       num_filters=256,
                                       stride=(1, 1),
                                       pad="same",
                                       nonlinearity=nn.nonlinearities.rectify)
    l5b = nn.layers.dnn.Conv2DDNNLayer(l5a,
                                       W=nn.init.Orthogonal("relu"),
                                       filter_size=(3, 3),
                                       num_filters=256,
                                       stride=(1, 1),
                                       pad="same",
                                       nonlinearity=nn.nonlinearities.rectify)
    l5c = nn.layers.dnn.Conv2DDNNLayer(l5b,
                                       W=nn.init.Orthogonal("relu"),
                                       filter_size=(3, 3),
                                       num_filters=256,
                                       stride=(1, 1),
                                       pad="same",
                                       nonlinearity=nn.nonlinearities.rectify)
    l5 = nn.layers.dnn.MaxPool2DDNNLayer(l5c, pool_size=(2, 2), stride=(2, 2))

    l5drop = nn.layers.dropout(l5, p=0.0)
    ld1 = nn.layers.DenseLayer(l5drop,
                               num_units=512,
                               W=nn.init.Orthogonal("relu"),
                               b=nn.init.Constant(0.1),
                               nonlinearity=nn.nonlinearities.rectify)

    ld1drop = nn.layers.dropout(ld1, p=0.0)
    ld2 = nn.layers.DenseLayer(ld1drop,
                               num_units=512,
                               W=nn.init.Orthogonal("relu"),
                               b=nn.init.Constant(0.1),
                               nonlinearity=nn.nonlinearities.rectify)

    ld2drop = nn.layers.dropout(ld2, p=0.0)

    ld3mu = nn.layers.DenseLayer(ld2drop,
                                 num_units=1,
                                 W=nn.init.Orthogonal("relu"),
                                 b=nn.init.Constant(200.0),
                                 nonlinearity=None)
    ld3sigma = nn.layers.DenseLayer(ld2drop,
                                    num_units=1,
                                    W=nn.init.Orthogonal("relu"),
                                    b=nn.init.Constant(50.0),
                                    nonlinearity=lb_softplus(3))
    ld3musigma = nn.layers.ConcatLayer([ld3mu, ld3sigma], axis=1)

    # Reshape back to slicemodel
    ld3musigma_slices = nn.layers.ReshapeLayer(ld3musigma, (-1, NR_FRAMES, 2))

    l_systole_musigma = layers.ArgmaxAndMaxLayer(ld3musigma_slices, 'min')
    l_systole = layers.MuSigmaErfLayer(l_systole_musigma)

    l_diastole_musigma = layers.ArgmaxAndMaxLayer(ld3musigma_slices, 'max')
    l_diastole = layers.MuSigmaErfLayer(l_diastole_musigma)

    return {
        "inputs": {
            "sliced:data:singleslice": l0
        },
        "outputs": {
            "systole": l_systole,
            "diastole": l_diastole,
        },
        "regularizable": {
            ld1: l2_weight,
            ld2: l2_weight,
            ld3mu: l2_weight_out,
            ld3musigma: l2_weight_out,
        }
    }
def build_model():

    #################
    # Regular model #
    #################
    input_size = data_sizes["sliced:data:sax"]
    input_size_mask = data_sizes["sliced:data:sax:is_not_padded"]
    input_size_locations = data_sizes["sliced:data:sax:locations"]

    l0 = nn.layers.InputLayer(input_size)
    lin_slice_mask = nn.layers.InputLayer(input_size_mask)
    lin_slice_locations = nn.layers.InputLayer(input_size_locations)

    # PREPROCESS SLICES SEPERATELY
    l0_slices = nn.layers.ReshapeLayer(l0, (batch_size * nr_slices, 30, patch_px, patch_px)) # (bxs, t, i, j)
    subsample_factor = 2
    l0_slices_subsampled = nn.layers.SliceLayer(l0_slices, axis=1, indices=slice(0, 30, subsample_factor))
    nr_frames_subsampled = 30 / subsample_factor

    # PREPROCESS FRAMES SEPERATELY
    l0_frames = nn.layers.ReshapeLayer(l0_slices_subsampled, (batch_size * nr_slices * nr_frames_subsampled, 1, patch_px, patch_px))  # (bxsxt, 1, i, j)

    l1a = nn.layers.dnn.Conv2DDNNLayer(l0_frames,  W=nn.init.Orthogonal("relu"), filter_size=(3,3), num_filters=16, stride=(1,1), pad="same", nonlinearity=nn.nonlinearities.rectify)
    l1b = nn.layers.dnn.Conv2DDNNLayer(l1a, W=nn.init.Orthogonal("relu"), filter_size=(3,3), num_filters=16, stride=(1,1), pad="same", nonlinearity=nn.nonlinearities.rectify)
    l1c = nn.layers.dnn.Conv2DDNNLayer(l1b, W=nn.init.Orthogonal("relu"), filter_size=(3,3), num_filters=16, stride=(1,1), pad="same", nonlinearity=nn.nonlinearities.rectify)
    l1 = nn.layers.dnn.MaxPool2DDNNLayer(l1c, pool_size=(2,2), stride=(2,2))

    l2a = nn.layers.dnn.Conv2DDNNLayer(l1,  W=nn.init.Orthogonal("relu"), filter_size=(3,3), num_filters=32, stride=(1,1), pad="same", nonlinearity=nn.nonlinearities.rectify)
    l2b = nn.layers.dnn.Conv2DDNNLayer(l2a, W=nn.init.Orthogonal("relu"), filter_size=(3,3), num_filters=32, stride=(1,1), pad="same", nonlinearity=nn.nonlinearities.rectify)
    l2c = nn.layers.dnn.Conv2DDNNLayer(l2b, W=nn.init.Orthogonal("relu"), filter_size=(3,3), num_filters=32, stride=(1,1), pad="same", nonlinearity=nn.nonlinearities.rectify)
    l2 = nn.layers.dnn.MaxPool2DDNNLayer(l2c, pool_size=(2,2), stride=(2,2))

    l3a = nn.layers.dnn.Conv2DDNNLayer(l2,  W=nn.init.Orthogonal("relu"), filter_size=(3,3), num_filters=64, stride=(1,1), pad="same", nonlinearity=nn.nonlinearities.rectify)
    l3b = nn.layers.dnn.Conv2DDNNLayer(l3a, W=nn.init.Orthogonal("relu"), filter_size=(3,3), num_filters=64, stride=(1,1), pad="same", nonlinearity=nn.nonlinearities.rectify)
    l3c = nn.layers.dnn.Conv2DDNNLayer(l3b, W=nn.init.Orthogonal("relu"), filter_size=(3,3), num_filters=64, stride=(1,1), pad="same", nonlinearity=nn.nonlinearities.rectify)
    l3d = nn.layers.dnn.Conv2DDNNLayer(l3c, W=nn.init.Orthogonal("relu"), filter_size=(3,3), num_filters=64, stride=(1,1), pad="same", nonlinearity=nn.nonlinearities.rectify)
    l3 = nn.layers.dnn.MaxPool2DDNNLayer(l3d, pool_size=(2,2), stride=(2,2))

    l4a = nn.layers.dnn.Conv2DDNNLayer(l3,  W=nn.init.Orthogonal("relu"), filter_size=(3,3), num_filters=128, stride=(1,1), pad="same", nonlinearity=nn.nonlinearities.rectify)
    l4b = nn.layers.dnn.Conv2DDNNLayer(l4a, W=nn.init.Orthogonal("relu"), filter_size=(3,3), num_filters=128, stride=(1,1), pad="same", nonlinearity=nn.nonlinearities.rectify)
    l4c = nn.layers.dnn.Conv2DDNNLayer(l4b, W=nn.init.Orthogonal("relu"), filter_size=(3,3), num_filters=128, stride=(1,1), pad="same", nonlinearity=nn.nonlinearities.rectify)
    l4d = nn.layers.dnn.Conv2DDNNLayer(l4c, W=nn.init.Orthogonal("relu"), filter_size=(3,3), num_filters=128, stride=(1,1), pad="same", nonlinearity=nn.nonlinearities.rectify)
    l4 = nn.layers.dnn.MaxPool2DDNNLayer(l4d, pool_size=(2,2), stride=(2,2))

    l5a = nn.layers.dnn.Conv2DDNNLayer(l4,  W=nn.init.Orthogonal("relu"), filter_size=(3,3), num_filters=128, stride=(1,1), pad="same", nonlinearity=nn.nonlinearities.rectify)
    l5b = nn.layers.dnn.Conv2DDNNLayer(l5a, W=nn.init.Orthogonal("relu"), filter_size=(3,3), num_filters=128, stride=(1,1), pad="same", nonlinearity=nn.nonlinearities.rectify)
    l5c = nn.layers.dnn.Conv2DDNNLayer(l5b, W=nn.init.Orthogonal("relu"), filter_size=(3,3), num_filters=128, stride=(1,1), pad="same", nonlinearity=nn.nonlinearities.rectify)
    l5d = nn.layers.dnn.Conv2DDNNLayer(l5c, W=nn.init.Orthogonal("relu"), filter_size=(3,3), num_filters=128, stride=(1,1), pad="same", nonlinearity=nn.nonlinearities.rectify)
    l5 = nn.layers.dnn.MaxPool2DDNNLayer(l5d, pool_size=(2,2), stride=(2,2))

    l5drop = nn.layers.dropout(l5, p=0.5)
    ld1 = nn.layers.DenseLayer(l5drop, num_units=256, W=nn.init.Orthogonal("relu"), b=nn.init.Constant(0.1), nonlinearity=nn.nonlinearities.rectify)

    ld1drop = nn.layers.dropout(ld1, p=0.5)
    ld2 = nn.layers.DenseLayer(ld1drop, num_units=256, W=nn.init.Orthogonal("relu"),b=nn.init.Constant(0.1), nonlinearity=nn.nonlinearities.rectify)

    ld2drop = nn.layers.dropout(ld2, p=0.5)

    ld3mu = nn.layers.DenseLayer(ld2drop, num_units=1, W=nn.init.Orthogonal("relu"), b=nn.init.Constant(15.0), nonlinearity=None)
    ld3sigma = nn.layers.DenseLayer(ld2drop, num_units=1, W=nn.init.Orthogonal("relu"), b=nn.init.Constant(5.0), nonlinearity=lb_softplus(.3))
    ld3musigma = nn.layers.ConcatLayer([ld3mu, ld3sigma], axis=1)

    # Go back to a per slice model
    l_slices_musigma = nn.layers.ReshapeLayer(ld3musigma, (batch_size * nr_slices, nr_frames_subsampled, 2))  # (bxs, t, 2)
    l_slices_musigma_sys = layers.ArgmaxAndMaxLayer(l_slices_musigma, mode='min')  # (bxs, 2)
    l_slices_musigma_dia = layers.ArgmaxAndMaxLayer(l_slices_musigma, mode='max')  # (bxs, 2)

    # AGGREGATE SLICES PER PATIENT
    l_scaled_slice_locations = layers.TrainableScaleLayer(lin_slice_locations, scale=nn.init.Constant(0.1), trainable=False)

    # Systole
    l_pat_sys_ss_musigma = nn.layers.ReshapeLayer(l_slices_musigma_sys, (batch_size, nr_slices, 2))
    l_pat_sys_ss_mu = nn.layers.SliceLayer(l_pat_sys_ss_musigma, indices=0, axis=-1)
    l_pat_sys_ss_sigma = nn.layers.SliceLayer(l_pat_sys_ss_musigma, indices=1, axis=-1)
    l_pat_sys_aggr_mu_sigma = layers.JeroenLayer([l_pat_sys_ss_mu, l_pat_sys_ss_sigma, lin_slice_mask, l_scaled_slice_locations], rescale_input=1.)

    l_systole = layers.MuSigmaErfLayer(l_pat_sys_aggr_mu_sigma)

    # Diastole
    l_pat_dia_ss_musigma = nn.layers.ReshapeLayer(l_slices_musigma_dia, (batch_size, nr_slices, 2))
    l_pat_dia_ss_mu = nn.layers.SliceLayer(l_pat_dia_ss_musigma, indices=0, axis=-1)
    l_pat_dia_ss_sigma = nn.layers.SliceLayer(l_pat_dia_ss_musigma, indices=1, axis=-1)
    l_pat_dia_aggr_mu_sigma = layers.JeroenLayer([l_pat_dia_ss_mu, l_pat_dia_ss_sigma, lin_slice_mask, l_scaled_slice_locations], rescale_input=1.)

    l_diastole = layers.MuSigmaErfLayer(l_pat_dia_aggr_mu_sigma)


    return {
        "inputs":{
            "sliced:data:sax": l0,
            "sliced:data:sax:is_not_padded": lin_slice_mask,
            "sliced:data:sax:locations": lin_slice_locations,
        },
        "outputs": {
            "systole": l_systole,
            "diastole": l_diastole,
        },
        "regularizable": {
        },
    }
Ejemplo n.º 3
0
def build_model(input_layer=None):

    #################
    # Regular model #
    #################

    l_4ch = nn.layers.InputLayer(data_sizes["sliced:data:chanzoom:4ch"])
    l_2ch = nn.layers.InputLayer(data_sizes["sliced:data:chanzoom:2ch"])

    # Add an axis to concatenate over later
    l_4chr = nn.layers.ReshapeLayer(l_4ch, (
        batch_size,
        1,
    ) + l_4ch.output_shape[1:])
    l_2chr = nn.layers.ReshapeLayer(l_2ch, (
        batch_size,
        1,
    ) + l_2ch.output_shape[1:])

    # Cut the images in half, flip the left ones
    l_4ch_left = nn.layers.SliceLayer(l_4chr,
                                      indices=slice(image_size // 2 - 1, None,
                                                    -1),
                                      axis=-1)
    l_4ch_right = nn.layers.SliceLayer(l_4chr,
                                       indices=slice(image_size // 2, None, 1),
                                       axis=-1)
    l_2ch_left = nn.layers.SliceLayer(l_2chr,
                                      indices=slice(image_size // 2 - 1, None,
                                                    -1),
                                      axis=-1)
    l_2ch_right = nn.layers.SliceLayer(l_2chr,
                                       indices=slice(image_size // 2, None, 1),
                                       axis=-1)

    # Concatenate over second axis
    l_24lr = nn.layers.ConcatLayer(
        [l_4ch_left, l_4ch_right, l_2ch_left, l_2ch_right], axis=1)
    # b, 4, t, h, w

    # Subsample frames
    SUBSAMPLING_FACTOR = 2
    nr_subsampled_frames = nr_frames // SUBSAMPLING_FACTOR
    l_24lr_ss = nn.layers.SliceLayer(l_24lr,
                                     indices=slice(None, None,
                                                   SUBSAMPLING_FACTOR),
                                     axis=2)

    # Move frames and halves to batch, process them all in the same way, add channel axis
    l_halves = nn.layers.ReshapeLayer(l_24lr_ss,
                                      (batch_size * 4 * nr_subsampled_frames,
                                       1, image_size, image_size // 2))

    # First, do some convolutions in all directions
    l1a = nn.layers.dnn.Conv2DDNNLayer(l_halves,
                                       W=nn.init.Orthogonal("relu"),
                                       filter_size=(3, 3),
                                       num_filters=16,
                                       stride=(1, 1),
                                       pad="same",
                                       nonlinearity=nn.nonlinearities.rectify)
    l1b = nn.layers.dnn.Conv2DDNNLayer(l1a,
                                       W=nn.init.Orthogonal("relu"),
                                       filter_size=(3, 3),
                                       num_filters=16,
                                       stride=(1, 1),
                                       pad="same",
                                       nonlinearity=nn.nonlinearities.rectify)
    l1 = nn.layers.dnn.MaxPool2DDNNLayer(l1b, pool_size=(1, 2), stride=(1, 2))

    # Then, only use the last axis
    l2a = nn.layers.dnn.Conv2DDNNLayer(l1,
                                       W=nn.init.Orthogonal("relu"),
                                       filter_size=(1, 3),
                                       num_filters=32,
                                       stride=(1, 1),
                                       pad="same",
                                       nonlinearity=nn.nonlinearities.rectify)
    l2b = nn.layers.dnn.Conv2DDNNLayer(l2a,
                                       W=nn.init.Orthogonal("relu"),
                                       filter_size=(1, 3),
                                       num_filters=32,
                                       stride=(1, 1),
                                       pad="same",
                                       nonlinearity=nn.nonlinearities.rectify)
    l2 = nn.layers.dnn.MaxPool2DDNNLayer(l2b, pool_size=(1, 2), stride=(1, 2))

    l3a = nn.layers.dnn.Conv2DDNNLayer(l2,
                                       W=nn.init.Orthogonal("relu"),
                                       filter_size=(1, 3),
                                       num_filters=64,
                                       stride=(1, 1),
                                       pad="same",
                                       nonlinearity=nn.nonlinearities.rectify)
    l3b = nn.layers.dnn.Conv2DDNNLayer(l3a,
                                       W=nn.init.Orthogonal("relu"),
                                       filter_size=(1, 3),
                                       num_filters=64,
                                       stride=(1, 1),
                                       pad="same",
                                       nonlinearity=nn.nonlinearities.rectify)
    l3c = nn.layers.dnn.Conv2DDNNLayer(l3b,
                                       W=nn.init.Orthogonal("relu"),
                                       filter_size=(1, 3),
                                       num_filters=64,
                                       stride=(1, 1),
                                       pad="same",
                                       nonlinearity=nn.nonlinearities.rectify)
    l3 = nn.layers.dnn.MaxPool2DDNNLayer(l3c, pool_size=(1, 2), stride=(1, 2))

    l4a = nn.layers.dnn.Conv2DDNNLayer(l3,
                                       W=nn.init.Orthogonal("relu"),
                                       filter_size=(1, 3),
                                       num_filters=128,
                                       stride=(1, 1),
                                       pad="same",
                                       nonlinearity=nn.nonlinearities.rectify)
    l4b = nn.layers.dnn.Conv2DDNNLayer(l4a,
                                       W=nn.init.Orthogonal("relu"),
                                       filter_size=(1, 3),
                                       num_filters=128,
                                       stride=(1, 1),
                                       pad="same",
                                       nonlinearity=nn.nonlinearities.rectify)
    l4c = nn.layers.dnn.Conv2DDNNLayer(l4b,
                                       W=nn.init.Orthogonal("relu"),
                                       filter_size=(1, 3),
                                       num_filters=128,
                                       stride=(1, 1),
                                       pad="same",
                                       nonlinearity=nn.nonlinearities.rectify)
    l4 = nn.layers.dnn.MaxPool2DDNNLayer(l4c, pool_size=(1, 2), stride=(1, 2))

    # Now, process each row seperately, by flipping the channel and height axis, and then putting height in the batch
    l4shuffle = nn.layers.DimshuffleLayer(l4, pattern=(0, 2, 1, 3))
    l4rows = nn.layers.ReshapeLayer(
        l4shuffle, (batch_size * 4 * nr_subsampled_frames * image_size,
                    l4shuffle.output_shape[-2], l4shuffle.output_shape[-1]))

    # Systole
    ld1 = nn.layers.DenseLayer(l4rows,
                               num_units=256,
                               W=nn.init.Orthogonal("relu"),
                               b=nn.init.Constant(0.1),
                               nonlinearity=nn.nonlinearities.rectify)

    ld1drop = nn.layers.dropout(ld1, p=0.5)
    ld2 = nn.layers.DenseLayer(ld1drop,
                               num_units=256,
                               W=nn.init.Orthogonal("relu"),
                               b=nn.init.Constant(0.1),
                               nonlinearity=nn.nonlinearities.rectify)

    ld2drop = nn.layers.dropout(ld2, p=0.5)
    ld3mu = nn.layers.DenseLayer(ld2drop,
                                 num_units=1,
                                 W=nn.init.Orthogonal("relu"),
                                 b=nn.init.Constant(16.0),
                                 nonlinearity=None)
    ld3sigma = nn.layers.DenseLayer(ld2drop,
                                    num_units=1,
                                    W=nn.init.Orthogonal("relu"),
                                    b=nn.init.Constant(4.0),
                                    nonlinearity=lb_softplus(.01))
    ld3musigma = nn.layers.ConcatLayer([ld3mu, ld3sigma], axis=1)

    # Get the four halves back
    l_24lr_musigma = nn.layers.ReshapeLayer(
        ld3musigma, (batch_size, 4, nr_subsampled_frames, image_size, 2))
    l_24lr_musigma_shuffle = nn.layers.DimshuffleLayer(l_24lr_musigma,
                                                       pattern=(0, 2, 1, 3, 4))
    l_24lr_musigma_re = nn.layers.ReshapeLayer(
        l_24lr_musigma_shuffle,
        (batch_size * nr_subsampled_frames, 4, image_size, 2))

    l_4ch_left_musigma = nn.layers.SliceLayer(l_24lr_musigma_re,
                                              indices=0,
                                              axis=1)
    l_4ch_right_musigma = nn.layers.SliceLayer(l_24lr_musigma_re,
                                               indices=1,
                                               axis=1)
    l_2ch_left_musigma = nn.layers.SliceLayer(l_24lr_musigma_re,
                                              indices=2,
                                              axis=1)
    l_2ch_right_musigma = nn.layers.SliceLayer(l_24lr_musigma_re,
                                               indices=3,
                                               axis=1)

    l_4ch_musigma = layers.SumGaussLayer(
        [l_4ch_left_musigma, l_4ch_right_musigma])
    l_2ch_musigma = layers.SumGaussLayer(
        [l_2ch_left_musigma, l_2ch_right_musigma])

    l_musigma_frames = layers.IraLayerNoTime(l_4ch_musigma, l_2ch_musigma)

    # Minmax over time
    print l_musigma_frames.output_shape
    l_musigmas = nn.layers.ReshapeLayer(l_musigma_frames,
                                        (-1, nr_subsampled_frames, 2))
    l_musigma_sys = layers.ArgmaxAndMaxLayer(l_musigmas, mode='min')
    l_musigma_dia = layers.ArgmaxAndMaxLayer(l_musigmas, mode='max')

    l_systole = layers.MuSigmaErfLayer(l_musigma_sys)
    l_diastole = layers.MuSigmaErfLayer(l_musigma_dia)

    return {
        "inputs": {
            "sliced:data:chanzoom:4ch": l_4ch,
            "sliced:data:chanzoom:2ch": l_2ch,
        },
        "outputs": {
            "systole": l_systole,
            "diastole": l_diastole,
        },
        "regularizable": {},
        "meta_outputs": {}
    }
Ejemplo n.º 4
0
def build_model():

    #################
    # Regular model #
    #################
    input_size = data_sizes["sliced:data:sax"]
    input_size_mask = data_sizes["sliced:data:sax:is_not_padded"]
    input_size_locations = data_sizes["sliced:data:sax:locations"]

    l0 = nn.layers.InputLayer(input_size)
    lin_slice_mask = nn.layers.InputLayer(input_size_mask)
    lin_slice_locations = nn.layers.InputLayer(input_size_locations)

    # PREPROCESS SLICES SEPERATELY
    l0_slices = nn.layers.ReshapeLayer(
        l0, (batch_size * nr_slices, 30, patch_px, patch_px))  # (bxs, t, i, j)
    subsample_factor = 2
    l0_slices_subsampled = nn.layers.SliceLayer(l0_slices,
                                                axis=1,
                                                indices=slice(
                                                    0, 30, subsample_factor))
    nr_frames_subsampled = 30 / subsample_factor

    # PREPROCESS FRAMES SEPERATELY
    l0_frames = nn.layers.ReshapeLayer(
        l0_slices_subsampled, (batch_size * nr_slices * nr_frames_subsampled,
                               1, patch_px, patch_px))  # (bxsxt, 1, i, j)

    # downsample
    downsample = lambda incoming: nn.layers.dnn.Pool2DDNNLayer(
        incoming, pool_size=(2, 2), stride=(2, 2), mode='average_inc_pad')
    upsample = lambda incoming: nn.layers.Upscale2DLayer(incoming,
                                                         scale_factor=2)
    l0_frames_d0 = l0_frames
    l0_frames_d1 = downsample(l0_frames_d0)
    l0_frames_d2 = downsample(l0_frames_d1)
    l0_frames_d3 = downsample(l0_frames_d2)

    ld3a = nn.layers.dnn.Conv2DDNNLayer(l0_frames_d3,
                                        W=nn.init.Orthogonal("relu"),
                                        filter_size=(3, 3),
                                        num_filters=16,
                                        stride=(1, 1),
                                        pad="same",
                                        nonlinearity=nn.nonlinearities.rectify)
    ld3b = nn.layers.dnn.Conv2DDNNLayer(ld3a,
                                        W=nn.init.Orthogonal("relu"),
                                        filter_size=(3, 3),
                                        num_filters=16,
                                        stride=(1, 1),
                                        pad="same",
                                        nonlinearity=nn.nonlinearities.rectify)
    ld3c = nn.layers.dnn.Conv2DDNNLayer(ld3b,
                                        W=nn.init.Orthogonal("relu"),
                                        filter_size=(3, 3),
                                        num_filters=16,
                                        stride=(1, 1),
                                        pad="same",
                                        nonlinearity=nn.nonlinearities.rectify)
    ld3o = nn.layers.dnn.Conv2DDNNLayer(ld3c,
                                        W=nn.init.Orthogonal("relu"),
                                        filter_size=(3, 3),
                                        num_filters=16,
                                        stride=(1, 1),
                                        pad="same",
                                        nonlinearity=nn.nonlinearities.rectify)

    ld2i = nn.layers.ConcatLayer([l0_frames_d2, upsample(ld3o)], axis=1)
    ld2a = nn.layers.dnn.Conv2DDNNLayer(ld2i,
                                        W=nn.init.Orthogonal("relu"),
                                        filter_size=(5, 5),
                                        num_filters=32,
                                        stride=(1, 1),
                                        pad="same",
                                        nonlinearity=nn.nonlinearities.rectify)
    ld2b = nn.layers.dnn.Conv2DDNNLayer(ld2a,
                                        W=nn.init.Orthogonal("relu"),
                                        filter_size=(5, 5),
                                        num_filters=32,
                                        stride=(1, 1),
                                        pad="same",
                                        nonlinearity=nn.nonlinearities.rectify)
    ld2c = nn.layers.dnn.Conv2DDNNLayer(ld2b,
                                        W=nn.init.Orthogonal("relu"),
                                        filter_size=(5, 5),
                                        num_filters=32,
                                        stride=(1, 1),
                                        pad="same",
                                        nonlinearity=nn.nonlinearities.rectify)
    ld2d = nn.layers.dnn.Conv2DDNNLayer(ld2c,
                                        W=nn.init.Orthogonal("relu"),
                                        filter_size=(5, 5),
                                        num_filters=32,
                                        stride=(1, 1),
                                        pad="same",
                                        nonlinearity=nn.nonlinearities.rectify)
    ld2o = nn.layers.dnn.Conv2DDNNLayer(ld2d,
                                        W=nn.init.Orthogonal("relu"),
                                        filter_size=(5, 5),
                                        num_filters=32,
                                        stride=(1, 1),
                                        pad="same",
                                        nonlinearity=nn.nonlinearities.rectify)

    ld1i = nn.layers.ConcatLayer([l0_frames_d1, upsample(ld2o)], axis=1)
    ld1a = nn.layers.dnn.Conv2DDNNLayer(ld1i,
                                        W=nn.init.Orthogonal("relu"),
                                        filter_size=(5, 5),
                                        num_filters=32,
                                        stride=(1, 1),
                                        pad="same",
                                        nonlinearity=nn.nonlinearities.rectify)
    ld1b = nn.layers.dnn.Conv2DDNNLayer(ld1a,
                                        W=nn.init.Orthogonal("relu"),
                                        filter_size=(5, 5),
                                        num_filters=32,
                                        stride=(1, 1),
                                        pad="same",
                                        nonlinearity=nn.nonlinearities.rectify)
    ld1c = nn.layers.dnn.Conv2DDNNLayer(ld1b,
                                        W=nn.init.Orthogonal("relu"),
                                        filter_size=(5, 5),
                                        num_filters=32,
                                        stride=(1, 1),
                                        pad="same",
                                        nonlinearity=nn.nonlinearities.rectify)
    ld1d = nn.layers.dnn.Conv2DDNNLayer(ld1c,
                                        W=nn.init.Orthogonal("relu"),
                                        filter_size=(5, 5),
                                        num_filters=32,
                                        stride=(1, 1),
                                        pad="same",
                                        nonlinearity=nn.nonlinearities.rectify)
    ld1o = nn.layers.dnn.Conv2DDNNLayer(ld1d,
                                        W=nn.init.Orthogonal("relu"),
                                        filter_size=(5, 5),
                                        num_filters=32,
                                        stride=(1, 1),
                                        pad="same",
                                        nonlinearity=nn.nonlinearities.rectify)

    ld0i = nn.layers.ConcatLayer([l0_frames_d0, upsample(ld1o)], axis=1)
    ld0a = nn.layers.dnn.Conv2DDNNLayer(ld0i,
                                        W=nn.init.Orthogonal("relu"),
                                        filter_size=(5, 5),
                                        num_filters=32,
                                        stride=(1, 1),
                                        pad="same",
                                        nonlinearity=nn.nonlinearities.rectify)
    ld0b = nn.layers.dnn.Conv2DDNNLayer(ld0a,
                                        W=nn.init.Orthogonal("relu"),
                                        filter_size=(5, 5),
                                        num_filters=32,
                                        stride=(1, 1),
                                        pad="same",
                                        nonlinearity=nn.nonlinearities.rectify)
    ld0c = nn.layers.dnn.Conv2DDNNLayer(ld0b,
                                        W=nn.init.Orthogonal("relu"),
                                        filter_size=(5, 5),
                                        num_filters=32,
                                        stride=(1, 1),
                                        pad="same",
                                        nonlinearity=nn.nonlinearities.rectify)
    ld0d = nn.layers.dnn.Conv2DDNNLayer(ld0c,
                                        W=nn.init.Orthogonal("relu"),
                                        filter_size=(5, 5),
                                        num_filters=32,
                                        stride=(1, 1),
                                        pad="same",
                                        nonlinearity=nn.nonlinearities.rectify)
    ld0o = nn.layers.dnn.Conv2DDNNLayer(ld0d,
                                        W=nn.init.Orthogonal("relu"),
                                        filter_size=(5, 5),
                                        num_filters=1,
                                        stride=(1, 1),
                                        pad="same",
                                        nonlinearity=nn.nonlinearities.sigmoid)
    ld0r = nn.layers.ReshapeLayer(
        ld0o,
        (batch_size * nr_slices * nr_frames_subsampled, patch_px, patch_px))

    l_frames_musigma = layers.IntegrateAreaLayer(ld0r,
                                                 sigma_mode='scale',
                                                 sigma_scale=.1)
    area_per_pixel_cm = (float(patch_mm) / float(patch_px))**2 / 100.0
    l_frames_musigma_cm = layers.TrainableScaleLayer(
        l_frames_musigma,
        scale=nn.init.Constant(area_per_pixel_cm),
        trainable=False)

    # Go back to a per slice model
    l_slices_musigma_cm = nn.layers.ReshapeLayer(
        l_frames_musigma_cm,
        (batch_size * nr_slices, nr_frames_subsampled, 2))  # (bxs, t, 2)
    l_slices_musigma_cm_sys = layers.ArgmaxAndMaxLayer(l_slices_musigma_cm,
                                                       mode='min')  # (bxs, 2)
    l_slices_musigma_cm_dia = layers.ArgmaxAndMaxLayer(l_slices_musigma_cm,
                                                       mode='max')  # (bxs, 2)
    l_slices_musigma_cm_avg = layers.ArgmaxAndMaxLayer(l_slices_musigma_cm,
                                                       mode='mean')

    # AGGREGATE SLICES PER PATIENT
    l_scaled_slice_locations = layers.TrainableScaleLayer(
        lin_slice_locations, scale=nn.init.Constant(0.1), trainable=False)

    # Systole
    l_pat_sys_ss_musigma_cm = nn.layers.ReshapeLayer(
        l_slices_musigma_cm_sys, (batch_size, nr_slices, 2))
    l_pat_sys_ss_mu_cm = nn.layers.SliceLayer(l_pat_sys_ss_musigma_cm,
                                              indices=0,
                                              axis=-1)
    l_pat_sys_ss_sigma_cm = nn.layers.SliceLayer(l_pat_sys_ss_musigma_cm,
                                                 indices=1,
                                                 axis=-1)
    l_pat_sys_ss_sigma_cm = nn.layers.TrainableScaleLayer(
        l_pat_sys_ss_sigma_cm)
    l_pat_sys_aggr_mu_sigma = layers.JeroenLayer([
        l_pat_sys_ss_mu_cm, l_pat_sys_ss_sigma_cm, lin_slice_mask,
        l_scaled_slice_locations
    ],
                                                 rescale_input=1.)

    l_systole = layers.MuSigmaErfLayer(l_pat_sys_aggr_mu_sigma)

    # Diastole
    l_pat_dia_ss_musigma_cm = nn.layers.ReshapeLayer(
        l_slices_musigma_cm_dia, (batch_size, nr_slices, 2))
    l_pat_dia_ss_mu_cm = nn.layers.SliceLayer(l_pat_dia_ss_musigma_cm,
                                              indices=0,
                                              axis=-1)
    l_pat_dia_ss_sigma_cm = nn.layers.SliceLayer(l_pat_dia_ss_musigma_cm,
                                                 indices=1,
                                                 axis=-1)
    l_pat_dia_ss_sigma_cm = nn.layers.TrainableScaleLayer(
        l_pat_dia_ss_sigma_cm)
    l_pat_dia_aggr_mu_sigma = layers.JeroenLayer([
        l_pat_dia_ss_mu_cm, l_pat_dia_ss_sigma_cm, lin_slice_mask,
        l_scaled_slice_locations
    ],
                                                 rescale_input=1.)

    l_diastole = layers.MuSigmaErfLayer(l_pat_dia_aggr_mu_sigma)

    # Average
    l_pat_avg_ss_musigma_cm = nn.layers.ReshapeLayer(
        l_slices_musigma_cm_avg, (batch_size, nr_slices, 2))
    l_pat_avg_ss_mu_cm = nn.layers.SliceLayer(l_pat_avg_ss_musigma_cm,
                                              indices=0,
                                              axis=-1)
    l_pat_avg_ss_sigma_cm = nn.layers.SliceLayer(l_pat_avg_ss_musigma_cm,
                                                 indices=1,
                                                 axis=-1)
    l_pat_avg_aggr_mu_sigma = layers.JeroenLayer([
        l_pat_avg_ss_mu_cm, l_pat_avg_ss_sigma_cm, lin_slice_mask,
        l_scaled_slice_locations
    ],
                                                 rescale_input=1.)

    l_mean = layers.MuSigmaErfLayer(l_pat_avg_aggr_mu_sigma)

    return {
        "inputs": {
            "sliced:data:sax": l0,
            "sliced:data:sax:is_not_padded": lin_slice_mask,
            "sliced:data:sax:locations": lin_slice_locations,
        },
        "outputs": {
            "systole": l_systole,
            "diastole": l_diastole,
            "average": l_mean,
        },
        "regularizable": {},
    }
def build_model(input_layer = None):

    #################
    # Regular model #
    #################

    l_4ch = nn.layers.InputLayer(data_sizes["sliced:data:chanzoom:4ch"])
    l_2ch = nn.layers.InputLayer(data_sizes["sliced:data:chanzoom:2ch"])

    # Add an axis to concatenate over later
    l_4chr = nn.layers.ReshapeLayer(l_4ch, (batch_size, 1, ) + l_4ch.output_shape[1:])
    l_2chr = nn.layers.ReshapeLayer(l_2ch, (batch_size, 1, ) + l_2ch.output_shape[1:])
    
    # Cut the images in half, flip the left ones
    l_4ch_left = nn.layers.SliceLayer(l_4chr, indices=slice(image_size//2-1, None, -1), axis=-1)
    l_4ch_right = nn.layers.SliceLayer(l_4chr, indices=slice(image_size//2, None, 1), axis=-1)
    l_2ch_left = nn.layers.SliceLayer(l_2chr, indices=slice(image_size//2-1, None, -1), axis=-1)
    l_2ch_right = nn.layers.SliceLayer(l_2chr, indices=slice(image_size//2, None, 1), axis=-1)

    # Concatenate over second axis
    l_24lr = nn.layers.ConcatLayer([l_4ch_left, l_4ch_right, l_2ch_left, l_2ch_right], axis=1)
    # b, 4, t, h, w

    # Subsample frames
    SUBSAMPLING_FACTOR = 2
    nr_subsampled_frames = nr_frames // SUBSAMPLING_FACTOR
    l_24lr_ss = nn.layers.SliceLayer(l_24lr, indices=slice(None, None, SUBSAMPLING_FACTOR), axis=2)

    # Move frames and halves to batch, process them all in the same way, add channel axis
    l_halves = nn.layers.ReshapeLayer(l_24lr_ss, (batch_size * 4 * nr_subsampled_frames, 1, image_size, image_size//2))

    # First, do some convolutions in all directions
    num_channels = 64
    l1a = nn.layers.dnn.Conv2DDNNLayer(l_halves,  W=nn.init.Orthogonal("relu"), filter_size=(3,3), num_filters=num_channels, stride=(1,1), pad="same", nonlinearity=nn.nonlinearities.rectify)
    l1b = nn.layers.dnn.Conv2DDNNLayer(l1a, W=nn.init.Orthogonal("relu"), filter_size=(3,3), num_filters=num_channels, stride=(1,1), pad="same", nonlinearity=nn.nonlinearities.rectify)
    
    # Then, put an rnn over the last axis
    l1_shuffle = nn.layers.DimshuffleLayer(l1b, pattern=(0, 2, 3, 1))
    l1_r = nn.layers.ReshapeLayer(l1_shuffle, (batch_size * 4 * nr_subsampled_frames * image_size, image_size//2, num_channels))

    l_rnn = rnn_layer(l1_r, 1024)

    ld3mu = nn.layers.DenseLayer(l_rnn, num_units=1, W=nn.init.Orthogonal("relu"), b=nn.init.Constant(16.0), nonlinearity=None)
    ld3sigma = nn.layers.DenseLayer(l_rnn, num_units=1, W=nn.init.Orthogonal("relu"), b=nn.init.Constant(4.0), nonlinearity=lb_softplus(.01))
    ld3musigma = nn.layers.ConcatLayer([ld3mu, ld3sigma], axis=1)

    # Get the four halves back
    l_24lr_musigma = nn.layers.ReshapeLayer(ld3musigma, (batch_size, 4, nr_subsampled_frames, image_size, 2))
    l_24lr_musigma_shuffle = nn.layers.DimshuffleLayer(l_24lr_musigma, pattern=(0, 2, 1, 3, 4))
    l_24lr_musigma_re = nn.layers.ReshapeLayer(l_24lr_musigma_shuffle, (batch_size * nr_subsampled_frames, 4, image_size, 2))

    l_4ch_left_musigma = nn.layers.SliceLayer(l_24lr_musigma_re, indices=0, axis=1)   
    l_4ch_right_musigma = nn.layers.SliceLayer(l_24lr_musigma_re, indices=1, axis=1)   
    l_2ch_left_musigma = nn.layers.SliceLayer(l_24lr_musigma_re, indices=2, axis=1)   
    l_2ch_right_musigma = nn.layers.SliceLayer(l_24lr_musigma_re, indices=3, axis=1)

    l_4ch_musigma = layers.SumGaussLayer([l_4ch_left_musigma, l_4ch_right_musigma])
    l_2ch_musigma = layers.SumGaussLayer([l_2ch_left_musigma, l_2ch_right_musigma])

    l_musigma_frames = layers.IraLayerNoTime(l_4ch_musigma, l_2ch_musigma)

    # Minmax over time
    print(l_musigma_frames.output_shape)
    l_musigmas = nn.layers.ReshapeLayer(l_musigma_frames, (-1, nr_subsampled_frames, 2))
    l_musigma_sys = layers.ArgmaxAndMaxLayer(l_musigmas, mode='min')
    l_musigma_dia = layers.ArgmaxAndMaxLayer(l_musigmas, mode='max')

    l_systole = layers.MuSigmaErfLayer(l_musigma_sys)
    l_diastole = layers.MuSigmaErfLayer(l_musigma_dia)
 
    return {
        "inputs":{
            "sliced:data:chanzoom:4ch": l_4ch,
            "sliced:data:chanzoom:2ch": l_2ch,
        },
        "outputs": {
            "systole": l_systole,
            "diastole": l_diastole,
        },
        "regularizable": {
        },
        "meta_outputs": {
        }
    }