def __init__(self, in_channels, out_channels, kernel_size, stride, gcn_num, bias, poolsize, act, end_cnn=False, **kwargs): super().__init__() #same padding calc self.kernel_size = kernel_size self.stride = stride self.convs = nn.ModuleList() self.maxpools = nn.ModuleList() self.pool_stride = poolsize self.pool_size = poolsize self.activation = create_act(act) self.end_cnn = end_cnn self.gcn_num = gcn_num self.out_channels = out_channels for i in range(gcn_num): self.convs.append( nn.Conv2d(in_channels, out_channels, kernel_size, stride, bias=bias)) self.convs[-1].apply(self.weights_init) self.maxpools.append(nn.MaxPool2d(poolsize, stride=poolsize))
def __init__(self, input_dim, feature_map_dim, apply_u, inneract, bias): super(NTN, self).__init__() self.feature_map_dim = feature_map_dim self.apply_u = apply_u self.bias = bias self.inneract = create_act(inneract) self.vars = {} self.vars['V'] = glorot([feature_map_dim, input_dim * 2]) self.vars['W'] = glorot([feature_map_dim, input_dim, input_dim]) if self.bias: self.vars['b'] = nn.Parameter( torch.randn(feature_map_dim).to(FLAGS.device)) if self.apply_u: self.vars['U'] = glorot([feature_map_dim, 1])
def __init__(self, input_dim, output_dim, activation_type='relu', num_hidden_lyr=2, hidden_channels=None): super().__init__() self.out_dim = output_dim if not hidden_channels: hidden_channels = [input_dim for _ in range(num_hidden_lyr)] elif len(hidden_channels) != num_hidden_lyr: raise ValueError( "number of hidden layers should be the same as the lengh of hidden_channels" ) self.layer_channels = [input_dim] + hidden_channels + [output_dim] self.activation = create_act(activation_type) self.layers = nn.ModuleList( list( map(self.weight_init, [ nn.Linear(self.layer_channels[i], self.layer_channels[i + 1]) for i in range(len(self.layer_channels) - 1) ])))
def __init__(self, input_dim, inneract): super(MNE, self).__init__() self.inneract = create_act(inneract) self.input_dim = input_dim