Ejemplo n.º 1
0
    def __init__(self, input_channel, n_blocks=9, dropout=False):
        super(ResnetGenerator, self).__init__()

        self.conv0 = ConvBN(input_channel, 32, 7, 1)
        self.conv1 = ConvBN(32, 64, 3, 2, padding=1)
        self.conv2 = ConvBN(64, 128, 3, 2, padding=1)

        dim = 128
        self.resnet_blocks = []
        for i in range(n_blocks):
            block = self.add_sublayer("generator_%d" % (i + 1),
                                      ResnetBlock(dim, dropout))
            self.resnet_blocks.append(block)

        self.deconv0 = DeConvBN(dim,
                                32 * 2,
                                3,
                                2,
                                padding=[1, 1],
                                outpadding=[0, 1, 0, 1])
        self.deconv1 = DeConvBN(32 * 2,
                                32,
                                3,
                                2,
                                padding=[1, 1],
                                outpadding=[0, 1, 0, 1])

        self.conv3 = ConvBN(32,
                            input_channel,
                            7,
                            1,
                            norm=False,
                            act=False,
                            use_bias=True)
Ejemplo n.º 2
0
    def __init__(self, input_channel, d_dims=64, d_nlayers=3):
        super(NLayerDiscriminator, self).__init__()
        self.conv0 = ConvBN(input_channel,
                            d_dims,
                            4,
                            2,
                            1,
                            norm=False,
                            use_bias=True,
                            relufactor=0.2)

        nf_mult, nf_mult_prev = 1, 1
        self.conv_layers = []
        for n in range(1, d_nlayers):
            nf_mult_prev = nf_mult
            nf_mult = min(2**n, 8)
            conv = self.add_sublayer(
                'discriminator_%d' % (n),
                ConvBN(d_dims * nf_mult_prev,
                       d_dims * nf_mult,
                       4,
                       2,
                       1,
                       relufactor=0.2))
            self.conv_layers.append(conv)

        nf_mult_prev = nf_mult
        nf_mult = min(2**d_nlayers, 8)
        self.conv4 = ConvBN(d_dims * nf_mult_prev,
                            d_dims * nf_mult,
                            4,
                            1,
                            1,
                            relufactor=0.2)
        self.conv5 = ConvBN(d_dims * nf_mult,
                            1,
                            4,
                            1,
                            1,
                            norm=False,
                            act=None,
                            use_bias=True,
                            relufactor=0.2)
Ejemplo n.º 3
0
 def __init__(self, dim, dropout=False):
     super(ResnetBlock, self).__init__()
     self.dropout = dropout
     self.conv0 = ConvBN(dim, dim, 3, 1)
     self.conv1 = ConvBN(dim, dim, 3, 1, act=None)