Ejemplo n.º 1
0
 def __init__(self, layers):
     self._network = []
     for layer in layers:
         layer_type = layer.pop("type")
         if layer_type == "data":
             # this is a data layer
             new_layer = DataLayer(**layer)
         elif layer_type == "conv":
             new_layer = ConvLayer(**layer)
         elif layer_type == "pool":
             new_layer = PoolLayer(**layer)
         elif layer_type == "dense":
             new_layer = DenseLayer(**layer)
         elif layer_type == "relu":
             new_layer = ReLULayer()
         elif layer_type == "loss":
             new_layer = LossLayer(**layer)
         else:
             raise NotImplementedError(
                 "Layer type: {0} not found".format(layer_type))
         self._network.append(new_layer)
     self.initialize()
Ejemplo n.º 2
0
    def __init__(self, config):
        ModelBase.__init__(self)

        self.config = config
        self.verbose = self.config['verbose']
        self.name = 'alexnet'
        batch_size = config['batch_size']
        flag_datalayer = config['use_data_layer']
        lib_conv = config['lib_conv']
        n_softmax_out = config['n_softmax_out']
        # ##################### BUILD NETWORK ##########################
        # allocate symbolic variables for the data
        # 'rand' is a random array used for random cropping/mirroring of data
        x = T.ftensor4('x')
        y = T.lvector('y')
        rand = T.fvector('rand')
        lr = T.scalar('lr')

        if self.verbose: print 'AlexNet 2/16'
        self.layers = []
        params = []
        weight_types = []

        if flag_datalayer:
            data_layer = DataLayer(input=x,
                                   image_shape=(3, 256, 256, batch_size),
                                   cropsize=227,
                                   rand=rand,
                                   mirror=True,
                                   flag_rand=config['rand_crop'])

            layer1_input = data_layer.output
        else:
            layer1_input = x

        convpool_layer1 = ConvPoolLayer(input=layer1_input,
                                        image_shape=(3, 227, 227, batch_size),
                                        filter_shape=(3, 11, 11, 96),
                                        convstride=4,
                                        padsize=0,
                                        group=1,
                                        poolsize=3,
                                        poolstride=2,
                                        bias_init=0.0,
                                        lrn=True,
                                        lib_conv=lib_conv,
                                        verbose=self.verbose)
        self.layers.append(convpool_layer1)
        params += convpool_layer1.params
        weight_types += convpool_layer1.weight_type

        convpool_layer2 = ConvPoolLayer(input=convpool_layer1.output,
                                        image_shape=(96, 27, 27, batch_size),
                                        filter_shape=(96, 5, 5, 256),
                                        convstride=1,
                                        padsize=2,
                                        group=2,
                                        poolsize=3,
                                        poolstride=2,
                                        bias_init=0.1,
                                        lrn=True,
                                        lib_conv=lib_conv,
                                        verbose=self.verbose)
        self.layers.append(convpool_layer2)
        params += convpool_layer2.params
        weight_types += convpool_layer2.weight_type

        convpool_layer3 = ConvPoolLayer(input=convpool_layer2.output,
                                        image_shape=(256, 13, 13, batch_size),
                                        filter_shape=(256, 3, 3, 384),
                                        convstride=1,
                                        padsize=1,
                                        group=1,
                                        poolsize=1,
                                        poolstride=0,
                                        bias_init=0.0,
                                        lrn=False,
                                        lib_conv=lib_conv,
                                        verbose=self.verbose)
        self.layers.append(convpool_layer3)
        params += convpool_layer3.params
        weight_types += convpool_layer3.weight_type

        convpool_layer4 = ConvPoolLayer(input=convpool_layer3.output,
                                        image_shape=(384, 13, 13, batch_size),
                                        filter_shape=(384, 3, 3, 384),
                                        convstride=1,
                                        padsize=1,
                                        group=2,
                                        poolsize=1,
                                        poolstride=0,
                                        bias_init=0.1,
                                        lrn=False,
                                        lib_conv=lib_conv,
                                        verbose=self.verbose)
        self.layers.append(convpool_layer4)
        params += convpool_layer4.params
        weight_types += convpool_layer4.weight_type

        convpool_layer5 = ConvPoolLayer(input=convpool_layer4.output,
                                        image_shape=(384, 13, 13, batch_size),
                                        filter_shape=(384, 3, 3, 256),
                                        convstride=1,
                                        padsize=1,
                                        group=2,
                                        poolsize=3,
                                        poolstride=2,
                                        bias_init=0.0,
                                        lrn=False,
                                        lib_conv=lib_conv,
                                        verbose=self.verbose)
        self.layers.append(convpool_layer5)
        params += convpool_layer5.params
        weight_types += convpool_layer5.weight_type

        fc_layer6_input = T.flatten(
            convpool_layer5.output.dimshuffle(3, 0, 1, 2), 2)
        fc_layer6 = FCLayer(input=fc_layer6_input,
                            n_in=9216,
                            n_out=4096,
                            verbose=self.verbose)
        self.layers.append(fc_layer6)
        params += fc_layer6.params
        weight_types += fc_layer6.weight_type

        dropout_layer6 = DropoutLayer(fc_layer6.output,
                                      n_in=4096,
                                      n_out=4096,
                                      verbose=self.verbose)

        fc_layer7 = FCLayer(input=dropout_layer6.output,
                            n_in=4096,
                            n_out=4096,
                            verbose=self.verbose)
        self.layers.append(fc_layer7)
        params += fc_layer7.params
        weight_types += fc_layer7.weight_type

        dropout_layer7 = DropoutLayer(fc_layer7.output,
                                      n_in=4096,
                                      n_out=4096,
                                      verbose=self.verbose)

        softmax_layer8 = SoftmaxLayer(input=dropout_layer7.output,
                                      n_in=4096,
                                      n_out=n_softmax_out,
                                      verbose=self.verbose)
        self.layers.append(softmax_layer8)
        params += softmax_layer8.params
        weight_types += softmax_layer8.weight_type

        # #################### NETWORK BUILT #######################
        self.p_y_given_x = softmax_layer8.p_y_given_x
        self.y_pred = softmax_layer8.y_pred

        self.output = self.p_y_given_x

        self.cost = softmax_layer8.negative_log_likelihood(y)
        self.error = softmax_layer8.errors(y)
        if n_softmax_out < 5:
            self.error_top_5 = softmax_layer8.errors_top_x(y, n_softmax_out)
        else:
            self.error_top_5 = softmax_layer8.errors_top_x(y, 5)
        self.params = params

        # inputs
        self.x = x
        self.y = y
        self.rand = rand
        self.lr = lr
        self.shared_x = theano.shared(
            np.zeros(
                (3, config['input_width'], config['input_height'],
                 config['file_batch_size']),  # for loading large batch
                dtype=theano.config.floatX),
            borrow=True)

        self.shared_y = theano.shared(np.zeros((config['file_batch_size'], ),
                                               dtype=int),
                                      borrow=True)
        self.shared_lr = theano.shared(np.float32(config['learning_rate']))

        # training related
        self.base_lr = np.float32(config['learning_rate'])
        self.step_idx = 0
        self.mu = config['momentum']  # def: 0.9 # momentum
        self.eta = config['weight_decay']  #0.0002 # weight decay
        self.weight_types = weight_types
        self.batch_size = batch_size

        self.grads = T.grad(self.cost, self.params)

        subb_ind = T.iscalar('subb')  # sub batch index
        #print self.shared_x[:,:,:,subb_ind*self.batch_size:(subb_ind+1)*self.batch_size].shape.eval()
        self.subb_ind = subb_ind
        self.shared_x_slice = self.shared_x[:, :, :, subb_ind *
                                            self.batch_size:(subb_ind + 1) *
                                            self.batch_size]
        self.shared_y_slice = self.shared_y[subb_ind *
                                            self.batch_size:(subb_ind + 1) *
                                            self.batch_size]
Ejemplo n.º 3
0
    def __init__(self, config):

        self.config = config

        batch_size = config['batch_size']
        flag_datalayer = config['use_data_layer']
        lib_conv = config['lib_conv']

        # ##################### BUILD NETWORK ##########################
        # allocate symbolic variables for the data
        # 'rand' is a random array used for random cropping/mirroring of data
        x = T.ftensor4('x')
        y = T.ivector('y')
        rand = T.fvector('rand')

        print '... building the model'
        self.layers = []
        params = []
        weight_types = []

        if flag_datalayer:
            data_layer = DataLayer(input=x, image_shape=(3, 256, 256,
                                                         batch_size),
                                   cropsize=227, rand=rand, mirror=True,
                                   flag_rand=config['rand_crop'])

            layer1_input = data_layer.output
        else:
            layer1_input = x

        convpool_layer1 = ConvPoolLayer(input=layer1_input,
                                        image_shape=(3, 227, 227, batch_size), 
                                        filter_shape=(3, 11, 11, 96), 
                                        convstride=4, padsize=0, group=1, 
                                        poolsize=3, poolstride=2, 
                                        bias_init=0.0, lrn=True,
                                        lib_conv=lib_conv,
                                        )
        self.layers.append(convpool_layer1)
        params += convpool_layer1.params
        weight_types += convpool_layer1.weight_type

        convpool_layer2 = ConvPoolLayer(input=convpool_layer1.output,
                                        image_shape=(96, 27, 27, batch_size),
                                        filter_shape=(96, 5, 5, 256), 
                                        convstride=1, padsize=2, group=2, 
                                        poolsize=3, poolstride=2, 
                                        bias_init=0.1, lrn=True,
                                        lib_conv=lib_conv,
                                        )
        self.layers.append(convpool_layer2)
        params += convpool_layer2.params
        weight_types += convpool_layer2.weight_type

        convpool_layer3 = ConvPoolLayer(input=convpool_layer2.output,
                                        image_shape=(256, 13, 13, batch_size),
                                        filter_shape=(256, 3, 3, 384), 
                                        convstride=1, padsize=1, group=1, 
                                        poolsize=1, poolstride=0, 
                                        bias_init=0.0, lrn=False,
                                        lib_conv=lib_conv,
                                        )
        self.layers.append(convpool_layer3)
        params += convpool_layer3.params
        weight_types += convpool_layer3.weight_type

        convpool_layer4 = ConvPoolLayer(input=convpool_layer3.output,
                                        image_shape=(384, 13, 13, batch_size),
                                        filter_shape=(384, 3, 3, 384), 
                                        convstride=1, padsize=1, group=2, 
                                        poolsize=1, poolstride=0, 
                                        bias_init=0.1, lrn=False,
                                        lib_conv=lib_conv,
                                        )
        self.layers.append(convpool_layer4)
        params += convpool_layer4.params
        weight_types += convpool_layer4.weight_type

        convpool_layer5 = ConvPoolLayer(input=convpool_layer4.output,
                                        image_shape=(384, 13, 13, batch_size),
                                        filter_shape=(384, 3, 3, 256), 
                                        convstride=1, padsize=1, group=2, 
                                        poolsize=3, poolstride=2, 
                                        bias_init=0.0, lrn=False,
                                        lib_conv=lib_conv,
                                        )
        self.layers.append(convpool_layer5)
        params += convpool_layer5.params
        weight_types += convpool_layer5.weight_type

        fc_layer6_input = T.flatten(
            convpool_layer5.output.dimshuffle(3, 0, 1, 2), 2)
        fc_layer6 = FCLayer(input=fc_layer6_input, n_in=9216, n_out=4096)
        self.layers.append(fc_layer6)
        params += fc_layer6.params
        weight_types += fc_layer6.weight_type

        dropout_layer6 = DropoutLayer(fc_layer6.output, n_in=4096, n_out=4096)

        fc_layer7 = FCLayer(input=dropout_layer6.output, n_in=4096, n_out=4096)
        self.layers.append(fc_layer7)
        params += fc_layer7.params
        weight_types += fc_layer7.weight_type

        dropout_layer7 = DropoutLayer(fc_layer7.output, n_in=4096, n_out=4096)

        softmax_layer8 = SoftmaxLayer(
            input=dropout_layer7.output, n_in=4096, n_out=1000)
        self.layers.append(softmax_layer8)
        params += softmax_layer8.params
        weight_types += softmax_layer8.weight_type

        # #################### NETWORK BUILT #######################

        self.cost = softmax_layer8.negative_log_likelihood(y)
        self.errors = softmax_layer8.errors(y)
        self.errors_top_5 = softmax_layer8.errors_top_x(y, 5)
        self.params = params
        self.x = x
        self.y = y
        self.rand = rand
        self.weight_types = weight_types
        self.batch_size = batch_size
Ejemplo n.º 4
0
    def __init__(self, config):

        self.config = config

        batch_size = config['batch_size']
        batch_size = config['batch_size']
        flag_datalayer = config['use_data_layer']
        lib_conv = config['lib_conv']

        layers = []
        params = []
        weight_types = []

        # ##################### BUILD NETWORK ##########################
        # allocate symbolic variables for the data
        # 'rand' is a random array used for random cropping/mirroring of data
        x1 = T.ftensor4('x1')
        x2 = T.ftensor4('x2')
        y = T.lvector('y')  # The ground truth to be compared with will go here
        rand1 = T.fvector('rand1')
        rand2 = T.fvector('rand2')

        print '... building the model'

        if flag_datalayer:
            data_layerA = DataLayer(input=x1,
                                    image_shape=(3, 256, 256, batch_size),
                                    cropsize=227,
                                    rand=rand,
                                    mirror=True,
                                    flag_rand=config['rand_crop'])

            layer1A_input = data_layerA.output
        else:
            layer1A_input = x1

        if flag_datalayer:
            data_layerB = DataLayer(input=x2,
                                    image_shape=(3, 256, 256, batch_size),
                                    cropsize=227,
                                    rand=rand,
                                    mirror=True,
                                    flag_rand=config['rand_crop'])

            layer1B_input = data_layerB.output
        else:
            layer1B_input = x2

        fc_layer2_input = T.concatenate(
            (T.flatten(layer1A_input.dimshuffle(3, 0, 1, 2),
                       2), T.flatten(layer1B_input.dimshuffle(3, 0, 1, 2), 2)),
            axis=1)
        fc_layer2 = FCLayer(input=fc_layer2_input, n_in=154587 * 2, n_out=4096)
        layers.append(fc_layer2)
        params += fc_layer2.params
        weight_types += fc_layer2.weight_type

        dropout_layer2 = DropoutLayer(fc_layer2.output, n_in=4096, n_out=4096)

        fc_layer3 = FCLayer(input=dropout_layer2.output, n_in=4096, n_out=4096)
        layers.append(fc_layer3)
        params += fc_layer3.params
        weight_types += fc_layer3.weight_type

        dropout_layer3 = DropoutLayer(fc_layer3.output, n_in=4096, n_out=4096)

        # Final softmax layer
        softmax_layer3 = SoftmaxLayer(
            input=dropout_layer3.output, n_in=4096,
            n_out=2)  # Only a single binary output is required!
        layers.append(softmax_layer3)
        params += softmax_layer3.params
        weight_types += softmax_layer3.weight_type

        # #################### NETWORK BUILT #######################

        self.cost = softmax_layer3.negative_log_likelihood(y)
        self.errors = softmax_layer3.errors(y)
        self.errors_top_5 = softmax_layer3.errors_top_x(y, 5)
        self.x1 = x1
        self.x2 = x2
        self.y = y
        self.rand1 = rand1
        self.rand2 = rand2
        self.layers = layers
        self.params = params
        self.weight_types = weight_types
        self.batch_size = batch_size
Ejemplo n.º 5
0
    def image_repr(self, x, rand, config):
        batch_size = config['batch_size']
        flag_datalayer = config['use_data_layer']
        lib_conv = config['lib_conv']

        layers = []
        params = []
        weight_types = []

        if flag_datalayer:
            data_layer = DataLayer(input=x,
                                   image_shape=(3, 256, 256, batch_size),
                                   cropsize=227,
                                   rand=rand,
                                   mirror=True,
                                   flag_rand=config['rand_crop'])

            layer1_input = data_layer.output
        else:
            layer1_input = x

        convpool_layer1 = ConvPoolLayer(
            input=layer1_input,
            image_shape=(3, 227, 227, batch_size),
            filter_shape=(3, 11, 11, 96),
            convstride=4,
            padsize=0,
            group=1,
            poolsize=3,
            poolstride=2,
            bias_init=0.0,
            lrn=True,
            lib_conv=lib_conv,
        )
        layers.append(convpool_layer1)
        params += convpool_layer1.params
        weight_types += convpool_layer1.weight_type

        convpool_layer2 = ConvPoolLayer(
            input=convpool_layer1.output,
            image_shape=(96, 27, 27, batch_size),
            filter_shape=(96, 5, 5, 256),
            convstride=1,
            padsize=2,
            group=2,
            poolsize=3,
            poolstride=2,
            bias_init=0.1,
            lrn=True,
            lib_conv=lib_conv,
        )
        layers.append(convpool_layer2)
        params += convpool_layer2.params
        weight_types += convpool_layer2.weight_type

        convpool_layer3 = ConvPoolLayer(
            input=convpool_layer2.output,
            image_shape=(256, 13, 13, batch_size),
            filter_shape=(256, 3, 3, 384),
            convstride=1,
            padsize=1,
            group=1,
            poolsize=1,
            poolstride=0,
            bias_init=0.0,
            lrn=False,
            lib_conv=lib_conv,
        )
        layers.append(convpool_layer3)
        params += convpool_layer3.params
        weight_types += convpool_layer3.weight_type

        convpool_layer4 = ConvPoolLayer(
            input=convpool_layer3.output,
            image_shape=(384, 13, 13, batch_size),
            filter_shape=(384, 3, 3, 384),
            convstride=1,
            padsize=1,
            group=2,
            poolsize=1,
            poolstride=0,
            bias_init=0.1,
            lrn=False,
            lib_conv=lib_conv,
        )
        layers.append(convpool_layer4)
        params += convpool_layer4.params
        weight_types += convpool_layer4.weight_type

        convpool_layer5 = ConvPoolLayer(
            input=convpool_layer4.output,
            image_shape=(384, 13, 13, batch_size),
            filter_shape=(384, 3, 3, 256),
            convstride=1,
            padsize=1,
            group=2,
            poolsize=3,
            poolstride=2,
            bias_init=0.0,
            lrn=False,
            lib_conv=lib_conv,
        )
        layers.append(convpool_layer5)
        params += convpool_layer5.params
        weight_types += convpool_layer5.weight_type

        fc_layer6_input = T.flatten(
            convpool_layer5.output.dimshuffle(3, 0, 1, 2), 2)
        fc_layer6 = MaxoutLayer(input=fc_layer6_input, n_in=9216, n_out=4096)
        layers.append(fc_layer6)
        params += fc_layer6.params
        weight_types += fc_layer6.weight_type

        dropout_layer6 = DropoutLayer(fc_layer6.output, n_in=4096, n_out=4096)

        fc_layer7 = MaxoutLayer(input=dropout_layer6.output,
                                n_in=4096,
                                n_out=4096)
        layers.append(fc_layer7)
        params += fc_layer7.params
        weight_types += fc_layer7.weight_type

        #dropout_layer7 = DropoutLayer(fc_layer7.output, n_in=4096, n_out=4096)

        # Rename weight types so that weights can be shared
        new_weight_types = []
        counter_W = 0
        counter_b = 0
        for w in weight_types:
            if w == 'W':
                new_weight_types.append('W' + str(counter_W))
                counter_W += 1
            elif w == 'b':
                new_weight_types.append('b' + str(counter_b))
                counter_b += 1
        weight_types = new_weight_types

        return fc_layer7, layers, params, weight_types