Ejemplo n.º 1
0
def opti(y0,a,T,yT,n,F,sol,adj,gr,printplot=False):

    t=np.linspace(0,T,n+1)
    dt=float(T)/n
    
    x0     = SimpleVector(np.zeros(n+1))
    szi_x0 = np.zeros(n+1)
    
    

    def J(u):
        return F(u,a,y0,yT,T)

    def grad_J(u):
        l = adj(y0,a,len(u)-1,u,T,yT)
        return gr(u,l,dt)
    
    def Mud_J(u):
        
        y  = SimpleVector(grad_J(u))
        y2 = SimpleVector(np.zeros(len(u)))
        s  = SimpleVector(u)
        s2 = SimpleVector(np.zeros(len(u)))
        
        
        return MuVector([y,y2]),MuVector([s,s2])

    res1 = minimize(J,szi_x0,method='L-BFGS-B', jac=grad_J,
                   options={'gtol': 1e-6, 'disp': False})

    options={"beta":1,"mem_lim" : 10,"return_data":True,"jtol": 1e-6,}

    S1 = Lbfgs(J,grad_J,x0,options=options)
    
    S2 = MuLbfgs(J,grad_J,x0,Mud_J,options=options)

    res2 = S1.solve()
    res3 = S2.solve()
    x1 = res1.x
    x2 = res2['control'].array()
    x3 = res3['control'].array()
    
    if printplot == True:
        print res1.nit,res2['iteration'],res3['iteration']
        
        print l2_error(x1,x2,dt)
        print l2_error(x1,x3,dt)
        print l2_error(x2,x3,dt)

        plot(t,x1)
        plot(t,x2)
        plot(t,x3)
        legend(['scipy','lbfgs','mu'])
        show()

    return res1,res2,res3
Ejemplo n.º 2
0
def mini_solver(y0,a,T,yT,n,m,my_list,mem_limit,show_output=False):


    t=np.linspace(0,T,n+1)
    #initial guess for control and penalty control is set to be 0
    x0 = SimpleVector(np.zeros(n+m))
    
    dt = t[1]-t[0]

    def ser_J(u):
        return ser.Func(u,a,y0,yT,T)

    def ser_grad_J(u):
        l = ser.adjoint_solver(y0,a,len(u)-1,u,T,yT)
        return ser.L2_grad(u,l,dt)

    res1 = minimize(ser_J,np.zeros(n+1),method='L-BFGS-B', jac=ser_grad_J,
                   options={'gtol': 1e-6, 'disp': False})
    res2 = []
    
    for k in range(len(my_list)):
        #define reduced functional dependent only on u
        def J(u):
            y,Y=pen.solver(y0,a,n,m,u[:n+1],u[n+1:],T)
            return pen.Functional2(y,u[:n+1],u[n+1:],yT,T,my_list[k])
        
        #define our gradient using by solving adjoint equation
        def grad_J(u):
            #adjoint_solver(y0,a,n,m,u,lam,T,yT,my)
            l,L = pen.adjoint_solver(y0,a,n,m,u[:n+1],u[n+1:],T,yT,my_list[k])
            g = np.zeros(len(u))
            
            g[:n+1]=dt*(u[:n+1]+L)

            for i in range(m-1):
                g[n+1+i]=l[i+1][0]-l[i][-1]
                
            return g



        options={"mem_lim" : mem_limit,"return_data": True,"jtol" : 1e-4,}
        try:
            S = Lbfgs(J,grad_J,x0,options=options)

            data = S.solve()
        except Warning:
            data = {'control':x0,'iteration':-1,}
            
        res2.append(data)
        
    return res1,res2
def opti(y0, a, T, yT, n, F, sol, adj, gr, printplot=False):

    t = np.linspace(0, T, n + 1)
    dt = float(T) / n

    x0 = SimpleVector(np.zeros(n + 1))
    szi_x0 = np.zeros(n + 1)

    def J(u):
        return F(u, a, y0, yT, T)

    def grad_J(u):
        l = adj(y0, a, len(u) - 1, u, T, yT)
        return gr(u, l, dt)

    def Mud_J(u):

        y = SimpleVector(grad_J(u))
        y2 = SimpleVector(np.zeros(len(u)))
        s = SimpleVector(u)
        s2 = SimpleVector(np.zeros(len(u)))

        return MuVector([y, y2]), MuVector([s, s2])

    res1 = minimize(J,
                    szi_x0,
                    method='L-BFGS-B',
                    jac=grad_J,
                    options={
                        'gtol': 1e-6,
                        'disp': False
                    })

    options = {
        "beta": 1,
        "mem_lim": 10,
        "return_data": True,
        "jtol": 1e-6,
    }

    S1 = Lbfgs(J, grad_J, x0, options=options)

    S2 = MuLbfgs(J, grad_J, x0, Mud_J, options=options)

    res2 = S1.solve()
    res3 = S2.solve()
    x1 = res1.x
    x2 = res2['control'].array()
    x3 = res3['control'].array()

    if printplot == True:
        print res1.nit, res2['iteration'], res3['iteration']

        print l2_error(x1, x2, dt)
        print l2_error(x1, x3, dt)
        print l2_error(x2, x3, dt)

        plot(t, x1)
        plot(t, x2)
        plot(t, x3)
        legend(['scipy', 'lbfgs', 'mu'])
        show()

    return res1, res2, res3
Ejemplo n.º 4
0
def mini_solver(y0, a, T, yT, n, m, my_list, mem_limit, show_output=False):

    t = np.linspace(0, T, n + 1)
    #initial guess for control and penalty control is set to be 0
    x0 = SimpleVector(np.zeros(n + m))

    dt = t[1] - t[0]

    def ser_J(u):
        return ser.Func(u, a, y0, yT, T)

    def ser_grad_J(u):
        l = ser.adjoint_solver(y0, a, len(u) - 1, u, T, yT)
        return ser.L2_grad(u, l, dt)

    res1 = minimize(ser_J,
                    np.zeros(n + 1),
                    method='L-BFGS-B',
                    jac=ser_grad_J,
                    options={
                        'gtol': 1e-6,
                        'disp': False
                    })
    res2 = []

    for k in range(len(my_list)):
        #define reduced functional dependent only on u
        def J(u):
            y, Y = pen.solver(y0, a, n, m, u[:n + 1], u[n + 1:], T)
            return pen.Functional2(y, u[:n + 1], u[n + 1:], yT, T, my_list[k])

        #define our gradient using by solving adjoint equation
        def grad_J(u):
            #adjoint_solver(y0,a,n,m,u,lam,T,yT,my)
            l, L = pen.adjoint_solver(y0, a, n, m, u[:n + 1], u[n + 1:], T, yT,
                                      my_list[k])
            g = np.zeros(len(u))

            g[:n + 1] = dt * (u[:n + 1] + L)

            for i in range(m - 1):
                g[n + 1 + i] = l[i + 1][0] - l[i][-1]

            return g

        options = {
            "mem_lim": mem_limit,
            "return_data": True,
            "jtol": 1e-4,
        }
        try:
            S = Lbfgs(J, grad_J, x0, options=options)

            data = S.solve()
        except Warning:
            data = {
                'control': x0,
                'iteration': -1,
            }

        res2.append(data)

    return res1, res2
def mini_solver(y0,a,T,yT,n,m,my_list,show_output=False,mem_limit=15):
    
    t=np.linspace(0,T,n+1)
    #initial guess for control and penalty control is set to be 0
    x0 = SimpleVector(np.zeros(n+m))
    
    dt = t[1]-t[0]

    def ser_J(u):
        return ser.Func(u,a,y0,yT,T)

    def ser_grad_J(u):
        l = ser.adjoint_solver(y0,a,len(u)-1,u,T,yT)
        return ser.L2_grad(u,l,dt)

    res1 = minimize(ser_J,np.zeros(n+1),method='L-BFGS-B', jac=ser_grad_J,
                   options={'gtol': 1e-6, 'disp': False})
    res2 = []
    res3 = []
    
    H = None
    
    #solve problem for increasing mu
    for k in range(len(my_list)):
        #define reduced functional dependent only on u
        def J(u):
            y,Y=solver(y0,a,n,m,u[:n+1],u[n+1:],T)
            return Functional2(y,u[:n+1],u[n+1:],yT,T,my_list[k])
        
        #define our gradient using by solving adjoint equation
        def grad_J(u):
            #adjoint_solver(y0,a,n,m,u,lam,T,yT,my)
            l,L = adjoint_solver(y0,a,n,m,u[:n+1],u[n+1:],T,yT,my_list[k])
            g = np.zeros(len(u))
            
            g[:n+1]=dt*(u[:n+1]+L)

            for i in range(m-1):
                g[n+1+i]=l[i+1][0]-l[i][-1]
                
            return g
    
        def Mud_J(u):
            
            l,L,y,Y = adjoint_solver(y0,a,n,m,u[:n+1],u[n+1:],T,yT,my_list[k],get_y=True)
            
            u1   = u[:n+1]
            l1   = u[n+1:]
            du1  = float(T)*(u[:n+1]+L)/n
            ADJ1 = np.zeros(m-1)
            STA1 = np.zeros(m-1)
            for i in range(m-1):
                ADJ1[i] = l[i+1][0]
                STA1[i] = y[i][-1]

            y1 = np.zeros(len(u))
            y2 = np.zeros(len(u))
            
            y1[:n+1] = du1
            y1[n+1:] = ADJ1
            y2[n+1:] = l1 - STA1
            
            Y1 = SimpleVector(y1)
            Y2 = SimpleVector(y2)
            
            S1 = SimpleVector(u)
            S2 = SimpleVector(np.zeros(len(u)))
            return MuVector([Y1,Y2]),MuVector([S1,S2])

            
            
            
            

        #minimize J using initial guess x, and the gradient/functional above
        """
        default = {"jtol"                   : 1e-4,
                   "rjtol"                  : 1e-6,
                   "gtol"                   : 1e-4,
                   "rgtol"                  : 1e-5,
                   "maxiter"                :  200,
                   "display"                :    2,
                   "line_search"            : "strong_wolfe",
                   "line_search_options"    : ls,
                   "mem_lim"                : 5,
                   "Hinit"                  : "default",
                   "beta"                   : 1, 
                   "mu_val"                 : 1,
                   "old_hessian"            : None,
                   "penaly_number"          : 1,
                   "return_data"            : False, }
        """
        #mem_limit = 10
        options = {"mu_val": my_list[k], "old_hessian": H, 
                   "return_data": True,"mem_lim":mem_limit, "beta":1,
                   "save_number":-1,"jtol" : 1e-4,}
        
        options2={"mem_lim" : mem_limit,"return_data": True,"jtol" : 1e-4,}
        
        S1 = MuLbfgs(J,grad_J,x0,Mud_J,Hinit=None,options=options)
        S2 = Lbfgs(J,grad_J,x0,options=options2)
        try:
            data1 = S1.solve()
        except Warning:
            data1  = {'control'   : x0, 'iteration' : -1, 'lbfgs': H }
            
        except RuntimeError:
            data1  = {'control'   : x0, 'iteration' : -1, 'lbfgs': H }
        try:
            data2 = S2.solve()
        except:
            data2 = {'control'   : x0, 'iteration' : -1, 'lbfgs': H }

        res2.append(data1)
        res3.append(data2)
        
        
        H = data1['lbfgs']
        
        if show_output==True:
            
            x1 = data1['control']
            plot(t,x1.array()[:n+1])
            plot(t,res1.x)
            legend(["mu","normal"])
            print data1['iteration']
            show()
    
    return res1,res2,res3