def _validateModel(self): if self.criterion.type=='ClassNLLCriterion': last_layer = self.net[-1] while isinstance(last_layer, Container): last_layer = last_layer[-1] if last_layer.type != 'SoftMax': log_model.info('add SoftMax layer to last layer for ' 'using ClassNLLCriterion') self.net.add(SoftMax())
def forward(self,input): if isinstance(input,np.ndarray): x = Def_TensorTypes[len(input.shape)-1] if not self._forward: log_model.info('compile the network') self._forward = function(inputs=[x],outputs=self.get_output(x), allow_input_downcast=True) return self._forward(input) else: return self._forward(input) return self.get_output(input)