Ejemplo n.º 1
0
    def test_emergent_neuron(self):
        """Test quantitative equivalence with emergent on the neuron tutorial."""
        check = True

        for adapt_on in [False, True]:
            neuron_data = data.parse_unit(
                'neuron_adapt.dat' if adapt_on else 'neuron.dat')

            spec = leabra.UnitSpec(adapt_on=adapt_on,
                                   noisy_act=True,
                                   g_bar_e=0.3,
                                   g_bar_l=0.3,
                                   g_bar_i=1.0,
                                   act_gain=40,
                                   act_sd=0.01)
            log_names = ('net', 'I_net', 'v_m', 'act', 'v_m_eq', 'adapt',
                         'avg_ss', 'avg_s', 'avg_m', 'avg_s_eff', 'avg_l')
            receiver = leabra.Unit(spec=spec, log_names=log_names)

            inputs = 10 * [0.0] + 150 * [1.0] + 40 * [0.0]

            for g_e in inputs:
                receiver.add_excitatory(g_e)
                receiver.calculate_net_in()
                receiver.cycle('minus')

            # note that here there seems to be a bit of drift on I_net after the 190 time mark.
            # possibly because of the single/double float precision discrepancy.
            check = quantitative_match(receiver.logs,
                                       neuron_data,
                                       rtol=2e-05,
                                       atol=1e-08,
                                       check=check)

        self.assertTrue(check)
Ejemplo n.º 2
0
    def test_act(self):
        """Test that the unit activity is behaving well under excitation."""

        spec = leabra.UnitSpec(g_bar_e=0.40,
                               g_bar_l=2.80,
                               g_bar_i=1.00,
                               g_l=1.0,
                               e_rev_e=1.00,
                               e_rev_l=0.15,
                               e_rev_i=0.15,
                               act_thr=0.25,
                               act_gain=600.00,
                               act_sd=0.01)
        u = leabra.Unit(spec=spec)

        for _ in range(15):
            u.add_excitatory(1.0)
            u.calculate_net_in()
            u.cycle('minus')

        for _ in range(150):
            u.add_excitatory(1.0)
            u.calculate_net_in()
            u.cycle('minus')
            self.assertTrue(0.85 < u.act <= 0.95)

        for _ in range(10):
            u.add_excitatory(0.0)
            u.calculate_net_in()
            u.cycle('minus')

        self.assertTrue(u.act < 0.05)
Ejemplo n.º 3
0
    def test_emergent_neuron(self):
        """Test quantitative equivalence with emergent on the neuron tutorial."""
        for adapt_on in [False, True]:
            neuron_data = data.parse_unit(
                'neuron_adapt.txt' if adapt_on else 'neuron.txt')

            spec = leabra.UnitSpec(adapt_on=adapt_on, noisy_act=True)
            log_names = ('net', 'I_net', 'v_m', 'act', 'v_m_eq', 'adapt',
                         'avg_ss', 'avg_s', 'avg_m', 'avg_s_eff', 'avg_l')
            receiver = leabra.Unit(spec=spec, log_names=log_names)

            inputs = 10 * [0.0] + 150 * [1.0] + 40 * [0.0]

            for g_e in inputs:
                receiver.add_excitatory(g_e)
                receiver.calculate_net_in()
                receiver.cycle()

            check = True
            for name in receiver.logs.keys():
                for t, (py, em) in enumerate(
                        zip(receiver.logs[name], neuron_data[name])):
                    if not np.allclose(py, em, rtol=1e-05, atol=1e-07):
                        print(
                            '{}:{:03d} [py] {: .10f} != {: .10f} [emergent] ({}adapt)'
                            .format(name, t, py, em,
                                    '' if adapt_on else 'no '))
                        check = False
                    elif name == 'I_net':
                        print(
                            '{}:{:03d} [py] {: .10f} == {: .10f} [emergent] ({}adapt)'
                            .format(name, t, py, em,
                                    '' if adapt_on else 'no '))

            self.assertTrue(check)
Ejemplo n.º 4
0
    def test_spec(self):
        """Test the behavior of spec"""
        u_spec = leabra.UnitSpec()
        u_spec.act_thr = 0.25
        u = leabra.Unit(spec=u_spec)  # by default, copyspec=False
        u2 = leabra.Unit(spec=u_spec)
        self.assertEqual(u.spec.act_thr, 0.25)
        self.assertEqual(u2.spec.act_thr, 0.25)
        u.spec.act_thr = 0.30
        self.assertEqual(u.spec.act_thr, 0.30)
        self.assertEqual(u2.spec.act_thr, 0.30)

        u3 = leabra.Unit(spec=u_spec.copy())  # u3 has an independent spec
        u3.spec.act_thr = 0.45
        self.assertEqual(u2.spec.act_thr, 0.30)
        self.assertEqual(u3.spec.act_thr, 0.45)
Ejemplo n.º 5
0
 def test_xx1_thr(self):
     """Test the threshold for xx1 functions"""
     u_spec = leabra.UnitSpec()
     u_spec.act_thr = 0.25
     u = leabra.Unit(spec=u_spec)
     self.assertEqual(u_spec.xx1(-0.1), 0.0)
     self.assertTrue(0.0 < u_spec.xx1(0.1))
     self.assertEqual(u_spec.noisy_xx1(-0.1), 0.0)
     self.assertTrue(0.1 < u_spec.noisy_xx1(0.1))
Ejemplo n.º 6
0
    def test_avgs_forced(self):
        """Test if units with forced activity update their averages"""
        u = leabra.Unit()

        for t in range(10):
            u.force_activity(1.0)
            u.calculate_net_in()
            u.cycle('minus')

        for name in ['avg_ss', 'avg_s', 'avg_m', 'avg_s_eff']:
            self.assertTrue(getattr(u, name) != 0.15)
Ejemplo n.º 7
0
    def test_avg_l(self):
        """Test that the long-term average are correctly updated."""
        u = leabra.Unit()

        for _ in range(20):
            u.add_excitatory(1.0)
            u.calculate_net_in()
            u.cycle()

        self.assertEqual(u.avg_l, 0.40)
        u.spec.update_avg_l(u)
        self.assertTrue(np.allclose(0.52, u.avg_l, rtol=0.1, atol=0.1))
        #TODO: verify that 0.52 is the value of emergent

        for _ in range(100):
            u.spec.update_avg_l(u)
        self.assertTrue(np.allclose(1.64, u.avg_l, rtol=0.1, atol=0.1))
Ejemplo n.º 8
0
    def test_forced_act(self):
        """Test that forcing activity behaves as expected"""
        u = leabra.Unit()
        u.force_activity(0.5)
        u.calculate_net_in()
        u.cycle()
        self.assertEqual(u.act, 0.5)

        # is it maintained without call to add_excitatory() ?
        for _ in range(10):
            u.calculate_net_in()
            u.cycle()
            self.assertEqual(u.act, 0.5)

        u.add_excitatory(0.5)
        u.calculate_net_in()
        u.cycle()
        self.assertFalse(u.act == 0.5)
Ejemplo n.º 9
0
    def test_emergent_xx1(self):
        """Test quantitative equivalence with emergent on the xx1 function."""
        xx1_data = data.parse_xy('convolve_nxx1.txt')

        spec = leabra.UnitSpec(adapt_on=False, noisy_act=True)
        receiver = leabra.Unit(spec=spec)
        receiver.cycle()  # create the noisy_xx1 convolution

        xs, ys = spec._nxx1_conv

        check = True
        for k, (pys, ems) in enumerate([(xs, xx1_data['x']),
                                        (ys, xx1_data['y'])]):
            for t, (py, em) in enumerate(zip(pys, ems)):
                if not np.allclose(py, em, rtol=1e-05, atol=1e-08):
                    print('{}:{} [py] {:.10f} != {:.10f} [emergent]'.format(
                        'x' if k == 0 else 'y', t, py, em))
                    check = False

        self.assertTrue(check)