Ejemplo n.º 1
0
    def fitness(self, net, proc, id_for_printing=-1):
        total_weights = net.num_edges()
        total_delays = net.num_edges()
        total_thresholds = net.num_nodes()
        dec = [8] * total_weights + [4] * total_delays + [7] * total_thresholds
        leap_decoder = BinaryToIntDecoder(*dec)

        problem = NetworkProblem(net, proc, self)
        genome_len = 8 * total_weights + 4 * total_delays + 7 * total_thresholds
        parents = Individual.create_population(
            10,
            initialize=create_binary_sequence(genome_len),
            decoder=leap_decoder,
            problem=problem)
        parents = Individual.evaluate_population(parents)
        max_generation = 10
        #stdout_probe = probe.FitnessStatsCSVProbe(context, stream=sys.stdout)

        generation_counter = util.inc_generation(context=context)

        while generation_counter.generation() < max_generation:
            offspring = pipe(
                parents, ops.tournament_selection, ops.clone,
                mutate_bitflip, ops.uniform_crossover, ops.evaluate,
                ops.pool(size=len(parents)))  #,  # accumulate offspring
            #stdout_probe)

            parents = offspring
            generation_counter()  # increment to the next generation

        best = probe.best_of_gen(parents).decode()
        set_weights(best, net)
        return self.get_fitness_score(net, proc, id_for_printing)
Ejemplo n.º 2
0
"""
from toolz import pipe

from leap_ec.individual import Individual
from leap_ec.decoder import IdentityDecoder
from leap_ec.global_vars import context

import leap_ec.ops as ops
from leap_ec.binary_rep.problems import MaxOnes
from leap_ec.binary_rep.initializers import create_binary_sequence
from leap_ec.binary_rep.ops import mutate_bitflip
from leap_ec import util

# create initial rand population of 5 individuals
parents = Individual.create_population(5,
                                       initialize=create_binary_sequence(4),
                                       decoder=IdentityDecoder(),
                                       problem=MaxOnes())
# Evaluate initial population
parents = Individual.evaluate_population(parents)

# print initial, random population
util.print_population(parents, generation=0)

# generation_counter is an optional convenience for generation tracking
generation_counter = util.inc_generation(context=context)

while generation_counter.generation() < 6:
    offspring = pipe(parents, ops.tournament_selection, ops.clone,
                     mutate_bitflip(expected_num_mutations=1),
                     ops.uniform_crossover(p_swap=0.2), ops.evaluate,
                     ops.pool(size=len(parents)))  # accumulate offspring
Ejemplo n.º 3
0
    # this was in the context of the 1/5 success rule, which we've not
    # implemented here.
    # Handbook of EC, B1.3:2
    context['leap']['std'] *= .85


if __name__ == '__main__':
    # Define the real value bounds for initializing the population. In this case,
    # we define a genome of four bounds.

    # the (-5.12,5.12) was what was originally used for this problem in
    # Ken De Jong's 1975 dissertation, so was used for historical reasons.
    bounds = [(-5.12, 5.12), (-5.12, 5.12), (-5.12, 5.12), (-5.12, 5.12)]
    parents = Individual.create_population(
        5,
        initialize=create_real_vector(bounds),
        decoder=IdentityDecoder(),
        problem=SpheroidProblem(maximize=False))

    # Evaluate initial population
    parents = Individual.evaluate_population(parents)

    context['leap']['std'] = 2

    # We use the provided context, but we could roll our own if we
    # wanted to keep separate contexts.  E.g., island models may want to have
    # their own contexts.
    generation_counter = util.inc_generation(context=context,
                                             callbacks=(anneal_std, ))

    # print initial, random population
Ejemplo n.º 4
0
#     print(f"{i}, {best}")


def init(length, seq_initializer):
    def create():
        return initializers.create_segmented_sequence(
            gene_size, create_int_vector(bounds))

    return create


#create initial rand population of 5 individuals

parents = Individual.create_population(n=pop_size,
                                       initialize=init(
                                           gene_size,
                                           create_int_vector(bounds)),
                                       decoder=decoder.IdentityDecoder(),
                                       problem=FunctionProblem(p.f, True))

# Evaluate initial population
parents = Individual.evaluate_population(parents)

# print initial, random population
util.print_population(parents, generation=0)

# generation_counter is an optional convenience for generation tracking
generation_counter = util.inc_generation(context=context)

#results = []
while generation_counter.generation() < 20:
    p.setStat()