def make_multiinstantiate(self, special_properties, name, parameters): """ Adds ComponentType with MultiInstantiate in order to make a population of neurons. Parameters ---------- special_properties : dict all variables to be defined in MultiInstantiate name : str MultiInstantiate component name parameters : dict all extra parameters needed """ PARAM_SUBSCRIPT = "_p" self._model_namespace["ct_populationname"] = name+"Multi" multi_ct = lems.ComponentType(self._model_namespace["ct_populationname"], extends=BASE_POPULATION) structure = lems.Structure() multi_ins = lems.MultiInstantiate(component_type=name, number="N") param_dict = {} # number of neruons multi_ct.add(lems.Parameter(name="N", dimension="none")) # other parameters for sp in special_properties: if special_properties[sp] is None: multi_ct.add(lems.Parameter(name=sp+PARAM_SUBSCRIPT, dimension=self._all_params_unit[sp])) multi_ins.add(lems.Assign(property=sp, value=sp+PARAM_SUBSCRIPT)) param_dict[sp] = parameters[sp] else: # multi_ct.add(lems.Parameter(name=sp, dimension=self._all_params_unit[sp])) # check if there are some units in equations equation = special_properties[sp] # add spaces around brackets to prevent mismatching equation = re.sub("\(", " ( ", equation) equation = re.sub("\)", " ) ", equation) for i in get_identifiers(equation): # iterator is a special case if i == "i": regexp_noletter = "[^a-zA-Z0-9]" equation = re.sub("{re}i{re}".format(re=regexp_noletter), " {} ".format(INDEX), equation) # here it's assumed that we don't use Netwton in neuron models elif i in name_to_unit and i != "N": const_i = i+'const' multi_ct.add(lems.Constant(name=const_i, symbol=const_i, dimension=self._all_params_unit[sp], value="1"+i)) equation = re.sub(i, const_i, equation) multi_ins.add(lems.Assign(property=sp, value=equation)) structure.add(multi_ins) multi_ct.structure = structure self._model.add(multi_ct) param_dict = dict([(k+"_p", v) for k, v in param_dict.items()]) param_dict["N"] = self._nr_of_neurons self._model_namespace["populationname"] = self._model_namespace["ct_populationname"] + "pop" self._model_namespace["networkname"] = self._model_namespace["ct_populationname"] + "Net" self.add_population(self._model_namespace["networkname"], self._model_namespace["populationname"], self._model_namespace["ct_populationname"], **param_dict)
def _determine_parameters(self, paramdict): """ Iterator giving `lems.Parameter` for every parameter from *paramdict*. """ for var in paramdict: if is_dimensionless(paramdict[var]): self._all_params_unit[var] = "none" yield lems.Parameter(var, "none") else: dim = _determine_dimension(paramdict[var]) self._all_params_unit[var] = dim yield lems.Parameter(var, dim)
def build_lems_for_model(src): model = lems.Model() model.add(lems.Dimension('time', t=1)) # model.add(lems.Dimension('au')) # primary element of the model is a mass model component mass = lems.ComponentType(src.name, extends="baseCellMembPot") model.add(mass) ######### Adding v is required to ease mapping to NEURON... mass.dynamics.add(lems.StateVariable(name="v", dimension="voltage", exposure="v")) mass.add(lems.Attachments(name="synapses",type_="basePointCurrentDL")) for input in src.input: mass.dynamics.add(lems.DerivedVariable(name=input, dimension='none', exposure=input, select='synapses[*]/I', reduce='add')) mass.add(lems.Exposure(input, 'none')) for key, val in src.const.items(): mass.add(lems.Parameter(key, 'none')) # TODO units mass.add(lems.Constant(name="MSEC", dimension="time", value="1ms")) mass.add(lems.Constant(name="PI", dimension="none", value="3.14159265359")) states = [] der_vars = [] # for key in src.param: # mass.add(lems.Parameter(key, 'au')) # TODO units for key, val in src.auxex: val = val.replace('**', '^') mass.dynamics.add(lems.DerivedVariable(key, value=val)) for key in src.obsrv: name_dv = key.replace('(','_').replace(')','').replace(' - ','_min_') mass.dynamics.add(lems.DerivedVariable(name_dv, value=key, exposure=name_dv)) mass.add(lems.Exposure(name_dv, 'none')) for src_svar in src.state_space: name = src_svar.name ddt = src_svar.drift.replace('**', '^') mass.dynamics.add(lems.StateVariable(name, 'none', name)) mass.dynamics.add(lems.TimeDerivative(name, '(%s)/MSEC'%ddt)) mass.add(lems.Exposure(name, 'none')) ''' On condition is not need on the model but NeuroML requires its definition --> <OnCondition test="r .lt. 0"> <EventOut port="spike"/> </OnCondition>''' oc = lems.OnCondition(test='v .gt. 0') oc.actions.append(lems.EventOut(port='spike')) mass.dynamics.add(oc) return model
import lems.api as lems model = lems.Model() model.add(lems.Dimension('voltage', m=1, l=3, t=-3, i=-1)) model.add(lems.Dimension('time', t=1)) model.add(lems.Dimension('capacitance', m=-1, l=-2, t=4, i=2)) model.add(lems.Unit('milliVolt', 'mV', 'voltage', -3)) model.add(lems.Unit('milliSecond', 'ms', 'time', -3)) model.add(lems.Unit('microFarad', 'uF', 'capacitance', -12)) iaf1 = lems.ComponentType('iaf1') model.add(iaf1) iaf1.add(lems.Parameter('threshold', 'voltage')) iaf1.add(lems.Parameter('reset', 'voltage')) iaf1.add(lems.Parameter('refractoryPeriod', 'time')) iaf1.add(lems.Parameter('capacitance', 'capacitance')) iaf1.add(lems.Exposure('vexp', 'voltage')) dp = lems.DerivedParameter('range', 'threshold - reset', 'voltage') iaf1.add(dp) iaf1.dynamics.add(lems.StateVariable('v','voltage', 'vexp')) iaf1.dynamics.add(lems.DerivedVariable('v2',dimension='voltage', value='v*2')) cdv = lems.ConditionalDerivedVariable('v_abs','voltage') cdv.add(lems.Case('v .geq. 0','v')) cdv.add(lems.Case('v .lt. 0','-1*v')) iaf1.dynamics.add(cdv)
model.add(lems.Dimension(name="time", t=1)) model.add(lems.Unit(name="second", symbol="s", dimension="time", power=1)) model.add( lems.Unit(name="milli second", symbol="ms", dimension="time", power=-3)) lorenz = lems.ComponentType( name="lorenz1963", description= "The Lorenz system is a simplified model for atomspheric convection, derived from the Navier Stokes equations" ) model.add(lorenz) lorenz.add( lems.Parameter(name="sigma", dimension="none", description="Prandtl Number")) lorenz.add( lems.Parameter(name="beta", dimension="none", description="Also named b elsewhere")) lorenz.add( lems.Parameter( name="rho", dimension="none", description="Related to the Rayleigh number, also named r elsewhere")) lorenz.add(lems.Parameter(name="x0", dimension="none")) lorenz.add(lems.Parameter(name="y0", dimension="none")) lorenz.add(lems.Parameter(name="z0", dimension="none"))
def mdf_to_neuroml(graph, save_to=None, format=None, run_duration_sec=2): print("Converting graph: %s to NeuroML" % (graph.id)) net = neuromllite.Network(id=graph.id) net.notes = "NeuroMLlite export of {} graph: {}".format( format if format else "MDF", graph.id, ) model = lems.Model() lems_definitions = "%s_lems_definitions.xml" % graph.id for node in graph.nodes: print(" Node: %s" % node.id) node_comp_type = "%s__definition" % node.id node_comp = "%s__instance" % node.id # Create the ComponentType which defines behaviour of the general class ct = lems.ComponentType(node_comp_type, extends="baseCellMembPotDL") ct.add(lems.Attachments("only_input_port", "basePointCurrentDL")) ct.dynamics.add( lems.DerivedVariable(name="V", dimension="none", value="0", exposure="V")) model.add(ct) # Define the Component - an instance of the ComponentType comp = lems.Component(node_comp, node_comp_type) model.add(comp) cell = neuromllite.Cell(id=node_comp, lems_source_file=lems_definitions) net.cells.append(cell) pop = neuromllite.Population( id=node.id, size=1, component=cell.id, properties={ "color": "0.2 0.2 0.2", "radius": 3 }, ) net.populations.append(pop) if len(node.input_ports) > 1: raise Exception( "Currently only max 1 input port supported in NeuroML...") for ip in node.input_ports: ct.add(lems.Exposure(ip.id, "none")) ct.dynamics.add( lems.DerivedVariable( name=ip.id, dimension="none", select="only_input_port[*]/I", reduce="add", exposure=ip.id, )) on_start = None for p in node.parameters: print("Converting %s" % p) if p.value is not None: try: v_num = float(p.value) ct.add(lems.Parameter(p.id, "none")) comp.parameters[p.id] = v_num print(comp.parameters[p.id]) except Exception as e: ct.add(lems.Exposure(p.id, "none")) dv = lems.DerivedVariable( name=p.id, dimension="none", value="%s" % (p.value), exposure=p.id, ) ct.dynamics.add(dv) elif p.function is not None: ct.add(lems.Exposure(p.id, "none")) func_info = mdf_functions[p.function] expr = func_info["expression_string"] expr2 = substitute_args(expr, p.args) for arg in p.args: expr += ";{}={}".format(arg, p.args[arg]) dv = lems.DerivedVariable(name=p.id, dimension="none", value="%s" % (expr2), exposure=p.id) ct.dynamics.add(dv) else: ct.add(lems.Exposure(p.id, "none")) ct.dynamics.add( lems.StateVariable(name=p.id, dimension="none", exposure=p.id)) if p.default_initial_value: if on_start is None: on_start = lems.OnStart() ct.dynamics.add(on_start) sa = lems.StateAssignment( variable=p.id, value=str(evaluate_expr(p.default_initial_value))) on_start.actions.append(sa) if p.time_derivative: td = lems.TimeDerivative(variable=p.id, value=p.time_derivative) ct.dynamics.add(td) if len(node.output_ports) > 1: raise Exception( "Currently only max 1 output port supported in NeuroML...") for op in node.output_ports: ct.add(lems.Exposure(op.id, "none")) ct.dynamics.add( lems.DerivedVariable(name=op.id, dimension="none", value=op.value, exposure=op.id)) only_output_port = "only_output_port" ct.add(lems.Exposure(only_output_port, "none")) ct.dynamics.add( lems.DerivedVariable( name=only_output_port, dimension="none", value=op.id, exposure=only_output_port, )) if len(graph.edges) > 0: model.add( lems.Include( os.path.join(os.path.dirname(__file__), "syn_definitions.xml"))) rsDL = neuromllite.Synapse(id="rsDL", lems_source_file=lems_definitions) net.synapses.append(rsDL) # syn_id = 'silentSyn' # silentSynDL = neuromllite.Synapse(id=syn_id, lems_source_file=lems_definitions) for edge in graph.edges: print(f" Edge: {edge.id} connects {edge.sender} to {edge.receiver}") ssyn_id = "silentSyn_proj_%s" % edge.id ssyn_id = "silentSyn_proj_%s" % edge.id # ssyn_id = 'silentSynX' silentDLin = neuromllite.Synapse(id=ssyn_id, lems_source_file=lems_definitions) model.add(lems.Component(ssyn_id, "silentRateSynapseDL")) net.synapses.append(silentDLin) net.projections.append( neuromllite.Projection( id="proj_%s" % edge.id, presynaptic=edge.sender, postsynaptic=edge.receiver, synapse=rsDL.id, pre_synapse=silentDLin.id, type="continuousProjection", weight=1, random_connectivity=neuromllite.RandomConnectivity( probability=1), )) # Much more todo... model.export_to_file(lems_definitions) print("Nml net: %s" % net) if save_to: new_file = net.to_json_file(save_to) print("Saved NML to: %s" % save_to) ################################################################################ ### Build Simulation object & save as JSON simtime = 1000 * run_duration_sec dt = 0.1 sim = neuromllite.Simulation( id="Sim%s" % net.id, network=new_file, duration=simtime, dt=dt, seed=123, recordVariables={"OUTPUT": { "all": "*" }}, ) recordVariables = {} for node in graph.nodes: for ip in node.input_ports: if not ip.id in recordVariables: recordVariables[ip.id] = {} recordVariables[ip.id][node.id] = 0 for p in node.parameters: if p.is_stateful(): if not p.id in recordVariables: recordVariables[p.id] = {} recordVariables[p.id][node.id] = 0 for op in node.output_ports: if not op.id in recordVariables: recordVariables[op.id] = {} recordVariables[op.id][node.id] = 0 sim.recordVariables = recordVariables if save_to: sf = sim.to_json_file() print("Saved Simulation to: %s" % sf) return net, sim