Ejemplo n.º 1
0
 def _load_models(self, name, model, mlp_model):
   # Loads a network based on the provided config.
   model_class = U.import_obj('Model', model.class_path)
   mlp_model_class = U.import_obj('Model', mlp_model.class_path)
   del model['class_path'], mlp_model['class_path']
   with tf.variable_scope(name):
     self._mlp_model = mlp_model_class(seed=self.seed, **mlp_model)
     with tf.variable_scope('gcn'):
       self._model = model_class(seed=self.seed, **model)
Ejemplo n.º 2
0
 def _load_model(self, name, class_path, seed=None, **kwargs):
     # Loads a network based on the provided config.
     model_class = U.import_obj('Model', class_path)
     if seed is None:
         seed = self.seed
     with tf.variable_scope(name):
         self._model = model_class(seed=seed, **kwargs)
     return self._model
Ejemplo n.º 3
0
def make_env():
    env_config = get_env_config()
    return ParallelBatchedEnv(args.bs,
                              U.import_obj(env_config.class_name,
                                           env_config.class_path),
                              [env_config] * args.bs,
                              args.seed,
                              use_threads=not args.use_procs)
Ejemplo n.º 4
0
    def run_evaluator(self, id: str):
        env_config, sess_config, agent_config = (self.env_config,
                                                 self.sess_config,
                                                 self.agent_config)
        eval_config = self.eval_config

        agent_class = U.import_obj(agent_config.class_name,
                                   agent_config.class_path)
        shell_class = U.import_obj(sess_config.shell.class_name,
                                   sess_config.shell.class_path)
        env_class = U.import_obj(env_config.class_name, env_config.class_path)
        agent_config = copy.deepcopy(agent_config)
        agent_config.update(evaluation_mode=True)
        shell_config = dict(agent_class=agent_class,
                            agent_config=agent_config,
                            **self.sess_config.shell)

        env_configs = []

        for i in range(eval_config.batch_size):
            env_config = ConfigDict(**self.env_config)
            env_config.update({
                eval_config.dataset_type_field: id,
                'graph_start_idx': i,
                **eval_config.env_config
            })
            env_configs.append(env_config)

        evaluator_config = dict(
            shell_class=shell_class,
            shell_config=shell_config,
            env_class=env_class,
            env_configs=env_configs,
            loggers=self._setup_evaluator_loggers(id),
            heuristic_loggers=self._setup_evaluator_loggers(f'heuristic-{id}'),
            seed=self.seed,
            **eval_config)
        from liaison.distributed import Evaluator
        evaluator = Evaluator(**evaluator_config)
        t = evaluator.get_heuristic_thread()
        t.start()
        evaluator.run_loop(int(1e9))
        t.join()
Ejemplo n.º 5
0
    def run_actor(self, actor_id):
        """
        Launches an actor process with actor_id

    Args:
        actor_id (int): actor's id
    """

        agent_config, env_config, sess_config = (self.agent_config,
                                                 self.env_config,
                                                 self.sess_config)
        agent_class = U.import_obj(agent_config.class_name,
                                   agent_config.class_path)

        shell_class = U.import_obj(sess_config.shell.class_name,
                                   sess_config.shell.class_path)

        env_class = U.import_obj(env_config.class_name, env_config.class_path)

        shell_config = dict(agent_class=agent_class,
                            agent_config=agent_config,
                            **self.sess_config.shell)

        actor_config = dict(
            actor_id=actor_id,
            shell_class=shell_class,
            shell_config=shell_config,
            agent_class=agent_class,
            agent_config=agent_config,
            env_class=env_class,
            env_configs=[self.env_config] * self.batch_size,
            traj_length=self.traj_length,
            seed=self.seed + actor_id * self.batch_size,
            batch_size=self.batch_size,
            system_loggers=self._setup_actor_system_loggers(actor_id)
            if actor_id == 0 else [],
            **self.sess_config.actor)

        actor_class = U.import_obj(sess_config.actor.class_name,
                                   sess_config.actor.class_path)
        actor_class(**actor_config)  # blocking constructor.
Ejemplo n.º 6
0
def run_debug():
    acts = read_pkl(args.debug_actions_fname)['actions']
    idx = args.debug_actions_index

    env_config = get_env_config()
    env = U.import_obj(env_config.class_name,
                       env_config.class_path)(**env_config,
                                              seed=args.seed,
                                              id=idx)

    ts = env.reset()
    for act in acts[idx]:
        env.step(act)
Ejemplo n.º 7
0
def _create_shell(env):
    agent_config = get_agent_config()
    agent_class = U.import_obj(agent_config.class_name,
                               agent_config.class_path)
    action_spec = env.action_spec()
    obs_spec = env.observation_spec()
    return Shell(action_spec,
                 obs_spec,
                 seed=SEED,
                 agent_class=agent_class,
                 agent_config=agent_config,
                 batch_size=B,
                 use_gpu=FLAGS.enable_gpu)
Ejemplo n.º 8
0
def get_shell_config():
    config = ConfigDict()
    agent_config = get_agent_config()
    # shell class path is default to the distributed folder.
    config.class_path = 'liaison.distributed.shell_for_test'
    config.class_name = 'Shell'
    config.agent_scope = 'shell'
    config.use_gpu = True
    config.agent_class = U.import_obj(agent_config.class_name,
                                      agent_config.class_path)
    config.agent_config = agent_config
    config.agent_config.update(evaluation_mode=True)
    return config
Ejemplo n.º 9
0
def make_env(k_val):
    env_config = ConfigDict(to_nested_dicts(args.env_config))
    env_config.lp_features = False
    env_config.k = k_val
    env_config.n_local_moves = args.n_local_moves
    env_config.primal_gap_reward = True
    env_config.delta_reward = False
    env_config.disable_maxcuts = args.disable_maxcuts
    assert env_config.n_graphs == 1

    env_class = U.import_obj(env_config.class_name, env_config.class_path)
    env = env_class(id=0, seed=args.seed, **env_config)
    return env
Ejemplo n.º 10
0
def _create_learner(env, shell):
    agent_config = get_agent_config()
    agent_class = U.import_obj(agent_config.class_name,
                               agent_config.class_path)
    traj_spec = Trajectory(env.observation_spec(),
                           step_output_spec=shell.step_output_spec()).spec
    traj_spec = Trajectory.format_traj_spec(traj_spec, B, T)
    action_spec = env.action_spec()
    action_spec.set_shape((B, ) + action_spec.shape[1:])
    return Learner(seed=SEED,
                   traj_spec=traj_spec,
                   action_spec=action_spec,
                   agent_class=agent_class,
                   agent_config=dict(vis_loggers=[], **agent_config),
                   use_gpu=FLAGS.enable_gpu)
Ejemplo n.º 11
0
    def run_replay_worker(self, replay_id):
        """
            Launches a single replay server

        Args:
            replay_id: The id of the replay server
        """

        replay_class = U.import_obj(self.sess_config.replay.class_name,
                                    self.sess_config.replay.class_path)

        replay = replay_class(seed=self.seed,
                              index=replay_id,
                              tensorplex_config=self.sess_config.tensorplex,
                              **self.sess_config.replay)
        replay.start_threads()
        replay.join()
Ejemplo n.º 12
0
    def run_learner(self, iterations=None):
        """
        Launches the learner process.
        Learner consumes experience from replay
        and publishes experience to parameter server
    """

        agent_class = U.import_obj(self.agent_config.class_name,
                                   self.agent_config.class_path)
        loggers, var_loggers, vis_loggers = self._setup_learner_loggers()
        learner = Learner(agent_class=agent_class,
                          agent_config=dict(vis_loggers=vis_loggers,
                                            **self.agent_config),
                          traj_length=self.traj_length,
                          seed=self.seed,
                          loggers=loggers,
                          var_loggers=var_loggers,
                          system_loggers=self._setup_learner_system_loggers(),
                          **self.sess_config.learner)
        learner.main()
Ejemplo n.º 13
0
    def __init__(self, seed, model_kwargs, **kwargs):
        self.seed = seed
        self.config = ConfigDict(kwargs)
        with tf.variable_scope('gcn_model'):
            self._gcn_model = U.import_obj(
                'Model', model_kwargs['class_path'])(seed=seed, **model_kwargs)

        with tf.variable_scope('transformer'):
            self._trans = Transformer(**self.config)

        with tf.variable_scope('enc_node_embeds'):
            self._node_emb_mlp = make_mlp([self.config.d_model] * 2,
                                          'relu',
                                          activate_final=False,
                                          seed=seed,
                                          layer_norm=False)

        with tf.variable_scope('out_projection'):
            self._out_projection_mlp = snt.nets.MLP(
                [self.config.d_model],
                initializers=dict(w=glorot_uniform(seed),
                                  b=initializers.init_ops.Constant(0)),
                activate_final=False,
            )
Ejemplo n.º 14
0
def make_env():
  env_config = get_env_config()
  Env = U.import_obj(env_config.class_name, env_config.class_path)
  return Env(0, 42, **env_config)
Ejemplo n.º 15
0
def get_env_class():
    env_config = get_env_config()
    return U.import_obj(env_config.class_name, env_config.class_path)
Ejemplo n.º 16
0
def main(argv):
    global args
    args = parser.parse_args(argv[1:])
    if args.gpu_ids:
        os.environ['CUDA_VISIBLE_DEVICES'] = '_'.join(map(str, args.gpu_ids))
    else:
        os.environ['CUDA_VISIBLE_DEVICES'] = ''

    sess_config = ConfigDict(to_nested_dicts(args.sess_config))
    env_config = ConfigDict(to_nested_dicts(args.env_config))
    agent_config = ConfigDict(to_nested_dicts(args.agent_config))

    shell_class = U.import_obj(sess_config.shell.class_name,
                               sess_config.shell.class_path)
    env_class = U.import_obj(env_config.class_name, env_config.class_path)

    agent_class = U.import_obj(agent_config.class_name,
                               agent_config.class_path)

    if args.standalone:
        if args.heuristic:
            results_dir = Path(
                f'/data/nms/tfp/evaluation/standalone/{args.heuristic}/{args.name}/{env_config.graph_start_idx}/'
            )
        else:
            results_dir = Path(
                f'/data/nms/tfp/evaluation/standalone/agent/{args.name}/{env_config.graph_start_idx}/'
            )
    elif args.without_agent:
        results_dir = Path(
            f'/data/nms/tfp/evaluation/without_agent/{args.name}/{env_config.graph_start_idx}/'
        )
    elif args.heuristic:
        results_dir = Path(
            f'/data/nms/tfp/evaluation/{args.heuristic}/{args.name}/{env_config.graph_start_idx}/'
        )
    else:
        results_dir = Path(
            f'/data/nms/tfp/evaluation/scip/{args.name}/{env_config.graph_start_idx}'
        )
    results_dir.mkdir(parents=True, exist_ok=True)

    evaluator = Evaluator(shell_class=shell_class,
                          shell_config=sess_config.shell,
                          agent_class=agent_class,
                          agent_config=agent_config,
                          env_class=env_class,
                          env_config=env_config,
                          seed=args.seed,
                          dataset=env_config.dataset,
                          dataset_type=env_config.dataset_type,
                          graph_start_idx=env_config.graph_start_idx,
                          gap=args.gap,
                          max_nodes=args.max_nodes,
                          batch_size=args.batch_size,
                          n_local_moves=args.n_local_moves,
                          results_dir=results_dir,
                          use_parallel_envs=args.use_parallel_envs,
                          use_threaded_envs=args.use_threaded_envs,
                          heur_frequency=args.heur_frequency,
                          create_shell=(args.heuristic is None),
                          **sess_config)
    evaluator.run(standalone=args.standalone,
                  without_agent=args.without_agent,
                  heuristic=args.heuristic)
    print('Done!')
Ejemplo n.º 17
0
def get_shell_class():
    shell_config = get_shell_config()
    return U.import_obj(shell_config.class_name, shell_config.class_path)
Ejemplo n.º 18
0
def _get_env():
    env_config = get_env_config()
    env_class = U.import_obj(env_config.class_name, env_config.class_path)
    return SerialBatchedEnv(B, env_class, [env_config] * B, SEED)