Ejemplo n.º 1
0
def updtChart(site_triplet, siteName):
    print('Working on WTEQ POR Chart for ' + siteName)
    statsData = []
    minData = []
    maxData = []
    meanData = []
    lowestData = []
    highestData = []
    lowData = []
    highData = []
    sliderDates = []
    meanData = []
    trace = []
    sitePlotData = []
    PORplotData = []
    sitePlotNormData = []
    validTrip = [site_triplet]

    sensor = r"WTEQ"
    date_series = [
        date(2015, 10, 1) + datetime.timedelta(days=x) for x in range(0, 366)
    ]  #could use any year with a leap day
    if validTrip:
        normData = []
        for triplet in validTrip:
            url = '/'.join([
                dataUrl, 'normals', 'DAILY', sensor,
                triplet.replace(':', '_') + '.json'
            ])
            with request.urlopen(url) as d:
                jTemp = json.loads(d.read().decode())
            normData.append(jTemp)

        sitePlotNormData = np.array(normData[0]['values'], dtype=np.float)
    sitePlotNormData = sitePlotNormData.tolist()
    beginDateDict = {}
    for siteMeta in meta:
        beginDateDict.update({
            str(siteMeta['stationTriplet']):
            dt.strptime(str(siteMeta['beginDate']), "%Y-%m-%d %H:%M:%S")
        })

    siteBeginDate = min(beginDateDict.values())

    sYear = siteBeginDate.year
    if siteBeginDate.year > sYear:
        if siteBeginDate.month < 10:
            sYear = siteBeginDate.year
        else:
            if siteBeginDate.month == 10 and siteBeginDate.day == 1:
                sYear = siteBeginDate.year
            else:
                sYear = siteBeginDate.year + 1

    sDate = date(sYear, 10, 1).strftime("%Y-%m-%d")
    eDate = today.date().strftime("%Y-%m-%d")

    data = []
    for triplet in validTrip:
        url = '/'.join(
            [dataUrl, 'DAILY', sensor,
             triplet.replace(':', '_') + '.json'])
        with request.urlopen(url) as d:
            jTemp = json.loads(d.read().decode())
        data.append(trimToOct1(jTemp))

    for dataSite in data:
        if dataSite:
            padMissingData(dataSite, sDate, eDate)

    sitePlotData = np.array(data[0]['values'], dtype=np.float)

    PORplotData = list(
        [sitePlotData[i:i + 366] for i in range(0, len(sitePlotData), 366)])

    allButCurrWY = list(PORplotData)
    del allButCurrWY[-1]
    statsData = list(map(list, zip(*allButCurrWY)))

    if len(statsData[0]) > 1:
        statsData[151] = statsData[150]
        with warnings.catch_warnings():
            warnings.simplefilter("ignore", category=RuntimeWarning)
            minData = [np.nanmin(a) for a in statsData]
            maxData = [np.nanmax(a) for a in statsData]
            meanData = [np.nanpercentile(a, 50) for a in statsData]
            lowestData = [np.nanpercentile(a, 10) for a in statsData]
            highestData = [np.nanpercentile(a, 90) for a in statsData]
            lowData = [np.nanpercentile(a, 30) for a in statsData]
            highData = [np.nanpercentile(a, 70) for a in statsData]
        future_date_pad = 14
        if len(PORplotData[-1]) > 351:
            future_date_pad = 366 - len(PORplotData[-1]) - 1
        sliderDates = list(
            chain([(date_series[0])] + [
                date_series[get_last_non_zero_index(maxData[0:305]) +
                            future_date_pad]
            ]))
    else:
        sliderDates = list(chain([(date_series[0])] + [date_series[-1]]))

    if len(PORplotData) > 0:
        for index, i in enumerate(PORplotData):
            if index == len(PORplotData) - 1:
                trace.extend([
                    go.Scatter(x=date_series,
                               y=i,
                               name=str(sYear + index + 1),
                               visible=True,
                               connectgaps=True,
                               line=dict(color='rgb(0,0,0)'))
                ])
            elif np.nansum(i) > 0:
                trace.extend([
                    go.Scatter(x=date_series,
                               y=i,
                               name=str(sYear + index + 1),
                               visible='legendonly',
                               connectgaps=True)
                ])
    if meanData:
        if lowestData:
            trace.extend([
                go.Scatter(x=date_series,
                           y=minData,
                           legendgroup='centiles',
                           name=r'Min',
                           visible=True,
                           mode='line',
                           line=dict(width=0),
                           connectgaps=True,
                           fillcolor='rgba(237,0,1,0.15)',
                           fill='none',
                           showlegend=False,
                           hoverinfo='none')
            ])
            trace.extend([
                go.Scatter(x=date_series,
                           y=lowestData,
                           legendgroup='centiles',
                           name=r'10%',
                           visible=True,
                           mode='line',
                           line=dict(width=0),
                           connectgaps=True,
                           fillcolor='rgba(237,0,1,0.15)',
                           fill='tonexty',
                           showlegend=False,
                           hoverinfo='none')
            ])
        if lowData:
            trace.extend([
                go.Scatter(x=date_series,
                           y=lowData,
                           legendgroup='centiles',
                           name=r'30%',
                           visible=True,
                           mode='line',
                           line=dict(width=0),
                           connectgaps=True,
                           fillcolor='rgba(237,237,0,0.15)',
                           fill='tonexty',
                           showlegend=False,
                           hoverinfo='none')
            ])
        if highData:
            trace.extend([
                go.Scatter(x=date_series,
                           y=highData,
                           legendgroup='centiles',
                           name=r'Stats. Shading',
                           visible=True,
                           mode='line',
                           line=dict(width=0),
                           connectgaps=True,
                           fillcolor='rgba(115,237,115,0.15)',
                           fill='tonexty',
                           showlegend=True,
                           hoverinfo='none')
            ])
        if highestData:
            trace.extend([
                go.Scatter(x=date_series,
                           y=highestData,
                           legendgroup='centiles',
                           connectgaps=True,
                           name=r'90%',
                           visible=True,
                           mode='line',
                           line=dict(width=0),
                           fillcolor='rgba(0,237,237,0.15)',
                           fill='tonexty',
                           showlegend=False,
                           hoverinfo='none')
            ])
            trace.extend([
                go.Scatter(x=date_series,
                           y=maxData,
                           legendgroup='centiles',
                           name=r'Max',
                           visible=True,
                           mode='line',
                           line=dict(width=0),
                           connectgaps=True,
                           fillcolor='rgba(1,0,237,0.15)',
                           fill='tonexty',
                           showlegend=False,
                           hoverinfo='none')
            ])

    if minData:
        trace.extend([
            go.Scatter(x=date_series,
                       y=minData,
                       name=r'Min',
                       visible=True,
                       hoverinfo='none',
                       connectgaps=True,
                       line=dict(color='rgba(237,0,0,0.5)'))
        ])

    if len(sitePlotNormData) > 0:
        trace.extend([
            go.Scatter(x=date_series,
                       y=sitePlotNormData,
                       name=r"Normal ('81-'10)",
                       connectgaps=True,
                       visible=True,
                       hoverinfo='none',
                       line=dict(color='rgba(0,237,0,0.4)'))
        ])

    if meanData:
        if len(sitePlotNormData) > 0:
            trace.extend([
                go.Scatter(x=date_series,
                           y=meanData,
                           name=r'Normal (POR)',
                           visible='legendonly',
                           hoverinfo='none',
                           connectgaps=True,
                           line=dict(color='rgba(0,237,0,0.4)', dash='dash'))
            ])
        else:
            trace.extend([
                go.Scatter(x=date_series,
                           y=meanData,
                           name=r'Normal (POR)',
                           connectgaps=True,
                           visible=True,
                           hoverinfo='none',
                           line=dict(color='rgba(0,237,0,0.4)'))
            ])
    if maxData:
        trace.extend([
            go.Scatter(x=date_series,
                       y=maxData,
                       name=r'Max',
                       visible=True,
                       hoverinfo='none',
                       connectgaps=True,
                       line=dict(color='rgba(0,0,237,0.4)'))
        ])

    annoText = str(
        r"Statistical shading breaks at 10th, 30th, 50th, 70th, and 90th Percentiles<br>Normal ('81-'10) - Official median calculated from 1981 thru 2010 data <br>Normal (POR) - Unofficial mean calculated from Period of Record data <br>For more information visit: <a href='https://www.wcc.nrcs.usda.gov/normals/30year_normals_data.htm'>30 year normals calcuation description</a>"
    )
    asterisk = ''
    if len(sitePlotNormData) == 0:
        sitePlotNormData = meanData
        annoText = annoText + '<br>*POR data used to calculate Normals since no published 30-year normals available for this site'
        asterisk = '*'
    jDay = len(PORplotData[-1]) - 1
    if len(sitePlotNormData) == 0:
        perNorm = r'N/A'
    else:
        perNorm = str('{0:g}'.format(
            100 * round(PORplotData[-1][jDay] / sitePlotNormData[jDay], 2)))
    perPeak = str('{0:g}'.format(
        100 * round(PORplotData[-1][jDay] / max(sitePlotNormData), 2)))
    if not math.isnan(PORplotData[-1][jDay]):
        centile = ordinal(
            int(
                round(
                    stats.percentileofscore(statsData[jDay],
                                            PORplotData[-1][jDay]), 0)))
    else:
        centile = 'N/A'

    dayOfPeak = sitePlotNormData.index(max(sitePlotNormData))
    if jDay > dayOfPeak:
        tense = r'Since'
    else:
        tense = r'Until'
    daysToPeak = str(abs(jDay - dayOfPeak))
    annoData = str(r"Current" + asterisk + ":<br>% of Normal - " + perNorm +
                   r"%<br>" + r"% Normal Peak - " + perPeak + r"%<br>" +
                   r"Days " + tense + r" Normal Peak - " + daysToPeak + r"<br>"
                   r"Percentile Rank- " + centile)

    layout = go.Layout(images=[
        dict(
            source=
            "https://upload.wikimedia.org/wikipedia/commons/thumb/7/7f/US-NaturalResourcesConservationService-Logo.svg/2000px-US-NaturalResourcesConservationService-Logo.svg.png",
            xref="paper",
            yref="paper",
            x=0,
            y=0.9,
            xanchor="left",
            yanchor="bottom",
            sizex=0.4,
            sizey=0.1,
            opacity=0.5,
            layer="above")
    ],
                       annotations=[
                           dict(font=dict(size=10),
                                text=annoText,
                                x=0,
                                y=-0.41,
                                yref='paper',
                                xref='paper',
                                align='left',
                                showarrow=False),
                           dict(font=dict(size=10),
                                text=annoData,
                                x=0,
                                y=0.9,
                                yref='paper',
                                xref='paper',
                                align='left',
                                xanchor="left",
                                yanchor="top",
                                showarrow=False)
                       ],
                       legend=dict(traceorder='reversed',
                                   tracegroupgap=1,
                                   bordercolor='#E2E2E2',
                                   borderwidth=2),
                       showlegend=True,
                       title='Snow Water Equivalent at<br>' + siteName,
                       height=622,
                       width=700,
                       autosize=False,
                       yaxis=dict(title=r'Snow Water Equivalent (in.)',
                                  hoverformat='.1f',
                                  tickformat="0f"),
                       xaxis=dict(range=sliderDates,
                                  tickformat="%b %e",
                                  rangeselector=dict(buttons=list([
                                      dict(count=9,
                                           label='Jan',
                                           step='month',
                                           stepmode='todate'),
                                      dict(count=6,
                                           label='Apr',
                                           step='month',
                                           stepmode='todate'),
                                      dict(count=3,
                                           label='July',
                                           step='month',
                                           stepmode='todate'),
                                      dict(label='WY', step='all')
                                  ])),
                                  rangeslider=dict(thickness=0.1),
                                  type='date'))
    return {'data': trace, 'layout': layout}
Ejemplo n.º 2
0
def updtChart(basinName, basinSites):
    basin = basinName
    print('Working on PREC Projection Chart for ' + basinName)
    statsData = []
    minData = []
    maxData = []
    meanData = []
    lowestData = []
    highestData = []
    lowData = []
    highData = []
    sliderDates = []
    meanData = []
    trace = []
    plotData = []
    basinPlotData = []
    PORplotData = []
    basinNormData = []
    basinPlotNormData = []
    validTrip = []

    networks = [r'SNTL', r'SCAN', r'SNTLT']
    sensor = r"PREC"

    dataPath = path.join(this_dir, 'data', 'metaData', sensor, 'metaData.json')
    with open(dataPath, 'r') as j:
        meta = json.load(j)

    meta[:] = [
        x for x in meta if str.split(x['stationTriplet'], ":")[2] in networks
        and str.split(x['stationTriplet'], ":")[0] in basinSites
    ]

    validTrip = [x['stationTriplet'] for x in meta]
    date_series = [
        date(2015, 10, 1) + datetime.timedelta(days=x) for x in range(0, 366)
    ]  #could use any year with a leap day

    if validTrip:
        normData = []
        for triplet in validTrip:
            dataPath = dataPath = path.join(
                this_dir, 'data', 'norms', sensor,
                triplet.replace(':', '_') + '.json')
            with open(dataPath, 'r') as j:
                jTemp = json.load(j)
            normData.append(jTemp)

        basinNormData = [
            np.array(x['values'], dtype=np.float) for x in normData
            if x['values']
        ]

    if basinNormData:
        basinPlotNormData = list(
            np.nanmean(np.array([i for i in basinNormData]), axis=0))

        validTrip[:] = [
            x for index, x in enumerate(validTrip) if normData[index]['values']
        ]

    beginDateDict = {}
    for siteMeta in meta:
        beginDateDict.update({
            str(siteMeta['stationTriplet']):
            dt.strptime(str(siteMeta['beginDate']), "%Y-%m-%d %H:%M:%S")
        })
    basinBeginDate = min(beginDateDict.values())

    sYear = basinBeginDate.year
    if basinBeginDate.year > sYear:
        if basinBeginDate.month < 10:
            sYear = basinBeginDate.year
        else:
            if basinBeginDate.month == 10 and basinBeginDate.day == 1:
                sYear = basinBeginDate.year
            else:
                sYear = basinBeginDate.year + 1

    sDate = date(sYear, 10, 1).strftime("%Y-%m-%d")
    eDate = (today.date() - datetime.timedelta(days=1)).strftime("%Y-%m-%d")

    data = []
    for triplet in validTrip:
        dataPath = path.join(this_dir, 'data', sensor,
                             triplet.replace(':', '_') + '.json')
        with open(dataPath, 'r') as j:
            jTemp = json.load(j)
        data.append(jTemp)

    for dataSite in data:
        if dataSite:
            padMissingData(dataSite, sDate, eDate)

    plotData = [np.array(x['values'], dtype=np.float) for x in data]

    with warnings.catch_warnings():
        warnings.simplefilter("ignore", category=RuntimeWarning)
        basinPlotData = list(
            np.nanmean(np.array([i for i in plotData]), axis=0))

    PORplotData = list(
        [basinPlotData[i:i + 366] for i in range(0, len(basinPlotData), 366)])

    allButCurrWY = list(PORplotData)
    del allButCurrWY[-1]
    statsData = list(map(list, zip(*allButCurrWY)))

    if len(statsData[0]) > 1:
        statsData[151] = statsData[150]
        with warnings.catch_warnings():
            warnings.simplefilter("ignore", category=RuntimeWarning)
            minData = [np.nanmin(a) for a in statsData]
            maxData = [np.nanmax(a) for a in statsData]
            meanData = [np.nanmean(a) for a in statsData]
            lowestData = [np.nanpercentile(a, 10) for a in statsData]
            highestData = [np.nanpercentile(a, 90) for a in statsData]
            lowData = [np.nanpercentile(a, 30) for a in statsData]
            highData = [np.nanpercentile(a, 70) for a in statsData]
        sliderDates = list(chain([(date_series[0])] + [date_series[-1]]))
    else:
        sliderDates = list(chain([(date_series[0])] + [date_series[-1]]))

    jDay = len(PORplotData[-1]) - 1
    lastValue = PORplotData[-1][-1]
    nanList = [np.nan] * jDay
    projData = [
        createPRECProjTrace(a, jDay, lastValue, nanList) for a in allButCurrWY
    ]
    statsProj = list(map(list, zip(*projData)))
    cleanStatsProj = list(statsProj)
    if cleanStatsProj:
        with warnings.catch_warnings():
            warnings.simplefilter("ignore", category=RuntimeWarning)
            minProj = [np.nanmin(a) for a in cleanStatsProj]
            maxProj = [np.nanmax(a) for a in cleanStatsProj]
            medianProj = [np.nanpercentile(a, 50) for a in cleanStatsProj]
            lowestProj = [np.nanpercentile(a, 10) for a in cleanStatsProj]
            highestProj = [np.nanpercentile(a, 90) for a in cleanStatsProj]
            lowProj = [np.nanpercentile(a, 30) for a in cleanStatsProj]
            highProj = [np.nanpercentile(a, 70) for a in cleanStatsProj]

    if len(PORplotData) > 0:
        for index, i in enumerate(PORplotData):
            if index == len(PORplotData) - 1:
                trace.extend([
                    go.Scatter(x=date_series,
                               y=i,
                               name=str(sYear + index + 1),
                               visible=True,
                               connectgaps=True,
                               line=dict(color='rgb(0,0,0)'))
                ])
            elif np.nansum(i) > 0:
                trace.extend([
                    go.Scatter(x=date_series,
                               y=projData[index],
                               name=str(sYear + index + 1),
                               visible='legendonly',
                               connectgaps=True)
                ])
    if medianProj:
        if minProj:
            trace.extend([
                go.Scatter(x=date_series,
                           y=minProj,
                           name=r'Min Proj',
                           visible=True,
                           connectgaps=True,
                           line=dict(color='rgba(237,0,0,0.4)'))
            ])
        if lowestProj:
            trace.extend([
                go.Scatter(x=date_series,
                           y=lowestProj,
                           name=r'10% Proj',
                           visible=True,
                           connectgaps=True,
                           line=dict(color='rgba(237,0,1,0.4)'))
            ])
        if lowProj:
            trace.extend([
                go.Scatter(x=date_series,
                           y=lowProj,
                           name=r'30% Proj',
                           visible=True,
                           connectgaps=True,
                           line=dict(color='rgba(0,237,0,0.4)'))
            ])
        if medianProj:
            trace.extend([
                go.Scatter(x=date_series,
                           y=medianProj,
                           name=r'50% Proj',
                           connectgaps=True,
                           visible=True,
                           line=dict(color='rgba(0,237,0,0.4)'))
            ])
        if highProj:
            trace.extend([
                go.Scatter(x=date_series,
                           y=highProj,
                           name=r'70% Proj',
                           visible=True,
                           connectgaps=True,
                           line=dict(color='rgba(115,237,115,0.4)'))
            ])
        if highestProj:
            trace.extend([
                go.Scatter(x=date_series,
                           y=highestProj,
                           connectgaps=True,
                           name=r'90% Proj',
                           visible=True,
                           line=dict(color='rgba(1,237,237,0.4)'))
            ])
        if maxProj:
            trace.extend([
                go.Scatter(x=date_series,
                           y=maxProj,
                           name=r'Max Proj',
                           visible=True,
                           connectgaps=True,
                           line=dict(color='rgba(0,0,237,0.4)'))
            ])
    if meanData:
        if lowestData:
            trace.extend([
                go.Scatter(x=date_series,
                           y=minData,
                           legendgroup='centiles',
                           name=r'Min',
                           visible=True,
                           mode='line',
                           line=dict(width=0),
                           connectgaps=True,
                           fillcolor='rgba(237,0,1,0.15)',
                           fill='none',
                           showlegend=False,
                           hoverinfo='none')
            ])
            trace.extend([
                go.Scatter(x=date_series,
                           y=lowestData,
                           legendgroup='centiles',
                           name=r'10%',
                           visible=True,
                           mode='line',
                           line=dict(width=0),
                           connectgaps=True,
                           fillcolor='rgba(237,0,1,0.15)',
                           fill='tonexty',
                           showlegend=False,
                           hoverinfo='none')
            ])
        if lowData:
            trace.extend([
                go.Scatter(x=date_series,
                           y=lowData,
                           legendgroup='centiles',
                           name=r'30%',
                           visible=True,
                           mode='line',
                           line=dict(width=0),
                           connectgaps=True,
                           fillcolor='rgba(237,237,0,0.15)',
                           fill='tonexty',
                           showlegend=False,
                           hoverinfo='none')
            ])
        if highData:
            trace.extend([
                go.Scatter(x=date_series,
                           y=highData,
                           legendgroup='centiles',
                           name=r'Stats. Shading',
                           visible=True,
                           mode='line',
                           line=dict(width=0),
                           connectgaps=True,
                           fillcolor='rgba(115,237,115,0.15)',
                           fill='tonexty',
                           showlegend=True,
                           hoverinfo='none')
            ])
        if highestData:
            trace.extend([
                go.Scatter(x=date_series,
                           y=highestData,
                           legendgroup='centiles',
                           connectgaps=True,
                           name=r'90%',
                           visible=True,
                           mode='line',
                           line=dict(width=0),
                           fillcolor='rgba(0,237,237,0.15)',
                           fill='tonexty',
                           showlegend=False,
                           hoverinfo='none')
            ])
            trace.extend([
                go.Scatter(x=date_series,
                           y=maxData,
                           legendgroup='centiles',
                           name=r'Max',
                           visible=True,
                           mode='line',
                           line=dict(width=0),
                           connectgaps=True,
                           fillcolor='rgba(1,0,237,0.15)',
                           fill='tonexty',
                           showlegend=False,
                           hoverinfo='none')
            ])

    if basinPlotNormData:
        trace.extend([
            go.Scatter(x=date_series,
                       y=basinPlotNormData,
                       name=r"Normal ('81-'10)",
                       connectgaps=True,
                       visible=True,
                       hoverinfo='none',
                       line=dict(color='rgba(0,237,0,0.4)'))
        ])

    if meanData:
        if basinPlotNormData:
            trace.extend([
                go.Scatter(x=date_series,
                           y=meanData,
                           name=r'Normal (POR)',
                           visible='legendonly',
                           hoverinfo='none',
                           connectgaps=True,
                           line=dict(color='rgba(0,237,0,0.4)', dash='dash'))
            ])
        else:
            trace.extend([
                go.Scatter(x=date_series,
                           y=meanData,
                           name=r'Normal (POR)',
                           connectgaps=True,
                           visible=True,
                           hoverinfo='none',
                           line=dict(color='rgba(0,237,0,0.4)'))
            ])

    annoText = str(
        r"Statistical shading breaks at 10th, 30th, 50th, 70th, and 90th Percentiles<br>Normal ('81-'10) - Official mean calculated from 1981 thru 2010 data <br>Normal (POR) - Unofficial mean calculated from Period of Record data <br>For more information visit: <a href='https://www.wcc.nrcs.usda.gov/normals/30year_normals_data.htm'>30 year normals calcuation description</a>"
    )
    asterisk = ''
    if not basinPlotNormData:
        basinPlotNormData = meanData
        annoText = annoText + '<br>*POR data used to calculate Normals since no published 30-year normals available for this basin'
        asterisk = '*'
    if basinPlotNormData[jDay] == 0:
        perNorm = r'N/A'
    else:
        perNorm = str('{0:g}'.format(
            100 * round(PORplotData[-1][jDay] / basinPlotNormData[jDay], 2)))
    perPeak = str('{0:g}'.format(
        100 * round(PORplotData[-1][jDay] / max(basinPlotNormData), 2)))
    if not math.isnan(PORplotData[-1][jDay]):
        centile = ordinal(
            int(
                round(
                    stats.percentileofscore(statsData[jDay],
                                            PORplotData[-1][jDay]), 0)))
    else:
        centile = 'N/A'

    dayOfPeak = basinPlotNormData.index(max(basinPlotNormData))
    if jDay > dayOfPeak:
        tense = r'Since'
    else:
        tense = r'Until'
    daysToPeak = str(abs(jDay - dayOfPeak))
    annoData = str(r"Current" + asterisk + ":<br>% of Normal - " + perNorm +
                   r"%<br>" + r"% of Yearly Avg - " + perPeak + r"%<br>" +
                   r"Days " + tense + r" End of WY - " + daysToPeak + r"<br>"
                   r"Percentile Rank- " + centile)

    layout = go.Layout(images=[
        dict(
            source=
            "https://upload.wikimedia.org/wikipedia/commons/thumb/7/7f/US-NaturalResourcesConservationService-Logo.svg/2000px-US-NaturalResourcesConservationService-Logo.svg.png",
            xref="paper",
            yref="paper",
            x=0,
            y=0.9,
            xanchor="left",
            yanchor="bottom",
            sizex=0.4,
            sizey=0.1,
            opacity=0.5,
            layer="above")
    ],
                       annotations=[
                           dict(font=dict(size=10),
                                text=annoText,
                                x=0,
                                y=-0.41,
                                yref='paper',
                                xref='paper',
                                align='left',
                                showarrow=False),
                           dict(font=dict(size=10),
                                text=annoData,
                                x=0,
                                y=0.9,
                                yref='paper',
                                xref='paper',
                                align='left',
                                xanchor="left",
                                yanchor="top",
                                showarrow=False)
                       ],
                       legend=dict(traceorder='reversed',
                                   tracegroupgap=1,
                                   bordercolor='#E2E2E2',
                                   borderwidth=2),
                       showlegend=True,
                       title='Precipitation Projections in<br> ' + str(basin),
                       height=622,
                       width=700,
                       autosize=False,
                       yaxis=dict(title=r'Precipitation (in.)',
                                  hoverformat=".1f",
                                  tickformat="0f"),
                       xaxis=dict(range=sliderDates,
                                  tickformat="%b %e",
                                  rangeselector=dict(buttons=list([
                                      dict(count=9,
                                           label='Jan',
                                           step='month',
                                           stepmode='todate'),
                                      dict(count=6,
                                           label='Apr',
                                           step='month',
                                           stepmode='todate'),
                                      dict(count=3,
                                           label='July',
                                           step='month',
                                           stepmode='todate'),
                                      dict(label='WY', step='all')
                                  ])),
                                  rangeslider=dict(thickness=0.1),
                                  type='date'))
    return {'data': trace, 'layout': layout}