Ejemplo n.º 1
0
def make_feature_vector(readings):  # A function we apply to each group of power spectra
    '''
    Create 100, log10-spaced bins for each power spectrum.
    For more on how this particular implementation works, see:
    http://coolworld.me/pre-processing-EEG-consumer-devices/
    '''
    return brainlib.avgPowerSpectrum(brainlib.binnedPowerSpectra(spectra(readings), 100), np.log10)
Ejemplo n.º 2
0
def make_feature_vector (readings): # A function we apply to each group of power spectra
  '''
  Create 100, log10-spaced bins for each power spectrum.
  For more on how this particular implementation works, see:
  http://coolworld.me/pre-processing-EEG-consumer-devices/
  '''
  return brainlib.avgPowerSpectrum(
    brainlib.binnedPowerSpectra(spectra(readings), 100)
    , np.log10)
Ejemplo n.º 3
0
def bin_power_spectrum(power_spectrum):
    '''Create 100, log10-spaced bins for each power spectrum. See the work of Merrill et al.:
    Merrill, N., Maillart, T., Johnson, B., & Chuang, J. "Improving Physiological Signal
    Classification Using Logarithmic Quantization and a Progressive Calibration Technique."
    Physiological Computing Systems 2015. Angers, France.'''
    return(brainlib.binnedPowerSpectra(power_spectrum, 100))