Ejemplo n.º 1
0
def main():
    parser = argparse.ArgumentParser()

    parser.add_argument('dataset',
                        help='dataset ('
                        'shapenet'
                        ', '
                        'primitives'
                        ')')
    parser.add_argument('embeddings_path',
                        help='path to text embeddings pickle file')
    parser.add_argument('--metric',
                        help='path to text embeddings pickle file',
                        default='minkowski',
                        type=str)
    parser.add_argument('--cfg',
                        dest='cfg_files',
                        action='append',
                        help='optional config file',
                        default=None,
                        type=str)
    args = parser.parse_args()

    # modify default config if requested
    if args.cfg_files is not None:
        for cfg_file in args.cfg_files:
            cfg_from_file(cfg_file)

    cfg_from_list(['CONST.DATASET', args.dataset])

    with open(args.embeddings_path, 'rb') as f:
        embeddings_dict = pickle.load(f)

    if os.path.basename(args.embeddings_path) == 'text_embeddings.p':
        subdir = 'text'
    elif ((os.path.basename(args.embeddings_path) == 'shape_embeddings.p')
          or (os.path.basename(args.embeddings_path)
              == 'modified_shape_embeddings.p')):
        subdir = 'shape'
    else:
        subdir = 'unspecified'
    render_dir = os.path.join(os.path.dirname(args.embeddings_path),
                              'nearest_neighbor_renderings', subdir)
    np.random.seed(1234)
    compute_metrics(args.dataset,
                    embeddings_dict,
                    metric=args.metric,
                    concise=render_dir)
Ejemplo n.º 2
0
    test_loader = DataLoader(test_set,
                             batch_size=args.batch_size,
                             shuffle=False,
                             pin_memory=True,
                             num_workers=args.workers,
                             collate_fn=test_set.collate_batch)

    return test_loader


if __name__ == "__main__":
    # merge config and log to file
    if args.cfg_file is not None:
        cfg_from_file(args.cfg_file)
    if args.set_cfgs is not None:
        cfg_from_list(args.set_cfgs)
    cfg.TAG = os.path.splitext(os.path.basename(args.cfg_file))[0]

    if args.eval_mode == 'rpn':
        cfg.RPN.ENABLED = True
        cfg.RCNN.ENABLED = False
        root_result_dir = os.path.join('../', 'output', 'rpn', cfg.TAG)
        ckpt_dir = os.path.join('../', 'output', 'rpn', cfg.TAG, 'ckpt')
    elif args.eval_mode == 'rcnn':
        cfg.RCNN.ENABLED = True
        cfg.RPN.ENABLED = cfg.RPN.FIXED = True
        root_result_dir = os.path.join('../', 'output', 'rcnn', cfg.TAG)
        ckpt_dir = os.path.join('../', 'output', 'rcnn', cfg.TAG, 'ckpt')
    elif args.eval_mode == 'rcnn_offline':
        cfg.RCNN.ENABLED = True
        cfg.RPN.ENABLED = False
Ejemplo n.º 3
0
def main():
    args = parse_args()

    print('Called with args:')
    print(args)

    # Set main gpu
    theano.sandbox.cuda.use(args.gpu_id)

    if args.cfg_files is not None:
        for cfg_file in args.cfg_files:
            cfg_from_file(cfg_file)
    if args.set_cfgs is not None:
        cfg_from_list(args.set_cfgs)
    if not args.randomize:
        np.random.seed(cfg.CONST.RNG_SEED)

    if args.batch_size is not None:
        cfg_from_list(['CONST.BATCH_SIZE', args.batch_size])
    if args.iter is not None:
        cfg_from_list(['TRAIN.NUM_ITERATION', args.iter])
    if args.net_name is not None:
        cfg_from_list(['NET_NAME', args.net_name])
    if args.model_name is not None:
        cfg_from_list(['CONST.NETWORK_CLASS', args.model_name])
    if args.dataset is not None:
        cfg_from_list(['DATASET', args.dataset])
    if args.exp is not None:
        cfg_from_list(['TEST.EXP_NAME', args.exp])
    if args.out_path is not None:
        cfg_from_list(['DIR.OUT_PATH', args.out_path])
    if args.weights is not None:
        cfg_from_list([
            'CONST.WEIGHTS', args.weights, 'TRAIN.RESUME_TRAIN', True,
            'TRAIN.INITIAL_ITERATION',
            int(args.init_iter)
        ])

    print('Using config:')
    pprint.pprint(cfg)

    if not args.test:
        train_net()
    else:
        test_net()
    ax.set_zlim(0, 32)  # c = 16

    plt.tight_layout()
    plt.savefig('gen.png')

    faces = faces.copy()
    verts = (verts.copy() - 16) / 16

    # fit_mesh({'pos_idx': faces, 'vtx_pos': verts, 'col_idx': faces, 'vtx_col': torch.ones(verts.shape)}, paths, display_interval=50)
    fit_mesh_col(
        {
            'pos_idx': faces,
            'vtx_pos': verts,
            'col_idx': faces,
            'vtx_col': torch.ones(verts.shape)
        },
        paths,
        display_interval=None)


if __name__ == '__main__':
    # Set the batch size to 1
    # run: python estimate_shape.py
    # change the path to images and pretrained weights
    cfg_from_list(['CONST.BATCH_SIZE', 1])
    # weight: https://drive.google.com/open?id=1LtNhuUQdAeAyIUiuCavofBpjw26Ag6DP
    DEFAULT_WEIGHTS = 'checkpoint.pth'
    #paths = ['images/bottle1.jpg', 'images/bottle2.jpg', 'images/bottle3.jpg', 'images/bottle4.jpg']
    path = 'images/bottle'
    main(path)
Ejemplo n.º 5
0
def main():
    ### set divice
    if not args.cuda:
        cfg.TRAIN.DEVICE = torch.device('cpu')
    else :
        assert torch.cuda.is_available(), "Not enough GPU"
        #assert d < torch.cuda.device_count(), "Not enough GPU"
        os.environ["CUDA_VISIBLE_DEVICES"] = ",".join([str(ids) for ids in args.device_ids])
        torch.backends.cudnn.benchmark=True
        cfg.CUDA = True
        cfg.TRAIN.DEVICE = torch.device('cuda:0')
        print("Let's use", torch.cuda.device_count(), "GPUs!")

    ### set config 
    cfg_from_file(args.cfg_file)
    if args.set_cfgs is not None:
        cfg_from_list(args.set_cfgs)

    cfg_from_args(args)
    print_cfg(cfg)


    # assert_and_infer_cfg()



    if not cfg.TRAIN.NO_SAVE:

        run_folder = create_folder_for_run(cfg.TRAIN.RUNS_FOLDER)
        logging.basicConfig(level=logging.INFO,
                            format='%(message)s',
                            handlers=[
                                logging.FileHandler(os.path.join(run_folder, f'{cfg.TRAIN.NAME}.log')),
                                logging.StreamHandler(sys.stdout)
                            ])

        with open(os.path.join(run_folder, 'config_and_args.pkl'), 'wb') as f:
            blob = {'cfg': yaml.dump(cfg), 'args': args}
            pickle.dump(blob, f, pickle.HIGHEST_PROTOCOL)

        with open(os.path.join(run_folder, 'args.txt'), 'w') as f:
            for item in vars(args):
                f.write(item+":"+str(getattr(args,item))+'\n')
        logging.info('×' * 40)

        shutil.copy(args.cfg_file, os.path.join(run_folder, cfg.TRAIN.NAME) + '_cfg')
        logging.info('save config and args in runs folder:\n %s' % run_folder)
        # if args.use_tfboard:
        #     tblogger = SummaryWriter(run_folder)

    else:
        logging.basicConfig(level=logging.INFO)
        # logger = logging.getLogger(__name__)
    # print('args:')
    # logging.info(pprint.pformat(vars(args)))
    # print('cfg:')
    # logging.info(yaml.dump(cfg.TRAIN))


    loader = Random_DataLoader()

    model = get_Model()
    
    model = nn.DataParallel(model)
    model.to(cfg.TRAIN.DEVICE)

    logging.info(model)
    
    Trainer(loader, model)
Ejemplo n.º 6
0
def modify_args(args):
    """Modify the default config based on the command line arguments.
    """
    # modify default config if requested
    if args.cfg_files is not None:
        for cfg_file in args.cfg_files:
            cfg_from_file(cfg_file)
    randomize = args.randomize
    if args.test:  # Always randomize in test phase
        randomize = True
    if not randomize:
        np.random.seed(cfg.CONST.RNG_SEED)

    # NOTE: Unfortunately order matters here
    if args.lba_only is True:
        cfg_from_list(['LBA.COSINE_DIST', False])
    if args.metric_learning_only is True:
        cfg_from_list(['LBA.NO_LBA', True])
    if args.non_inverted_loss is True:
        cfg_from_list(['LBA.INVERTED_LOSS', False])
    if args.dataset is not None:
        cfg_from_list(['CONST.DATASET', args.dataset])
    if args.lba_mode is not None:
        cfg_from_list(['LBA.MODEL_TYPE', args.lba_mode])
    if args.lba_test_mode is not None:
        cfg_from_list(['LBA.TEST_MODE', args.lba_test_mode])
        # cfg_from_list(['LBA.N_CAPTIONS_PER_MODEL', 1])  # NOTE: Important!
    if args.shapenet_ct_classifier is True:
        cfg_from_list(
            ['CONST.SHAPENET_CT_CLASSIFIER', args.shapenet_ct_classifier])
    if args.visit_weight is not None:
        cfg_from_list(['LBA.VISIT_WEIGHT', args.visit_weight])
    if args.lba_unnormalize is True:
        cfg_from_list(['LBA.NORMALIZE', False])
    if args.improved_wgan is True:
        cfg_from_list(['CONST.IMPROVED_WGAN', args.improved_wgan])
    if args.synth_embedding is True:
        cfg_from_list(['CONST.SYNTH_EMBEDDING', args.synth_embedding])
    if args.all_tuples is True:
        cfg_from_list(['CONST.TEST_ALL_TUPLES', args.all_tuples])
    if args.reed_classifier is True:
        cfg_from_list(['CONST.REED_CLASSIFIER', args.reed_classifier])
    if args.noise_dist is not None:
        cfg_from_list(['GAN.NOISE_DIST', args.noise_dist])
    if args.uniform_max is not None:
        cfg_from_list(['GAN.NOISE_UNIF_ABS_MAX', args.uniform_max])
    if args.num_critic_steps is not None:
        cfg_from_list(['WGAN.NUM_CRITIC_STEPS', args.num_critic_steps])
    if args.intense_training_freq is not None:
        cfg_from_list(
            ['WGAN.INTENSE_TRAINING_FREQ', args.intense_training_freq])
    if args.match_loss_coeff is not None:
        cfg_from_list(['WGAN.MATCH_LOSS_COEFF', args.match_loss_coeff])
    if args.fake_match_loss_coeff is not None:
        cfg_from_list(
            ['WGAN.FAKE_MATCH_LOSS_COEFF', args.fake_match_loss_coeff])
    if args.fake_mismatch_loss_coeff is not None:
        cfg_from_list(
            ['WGAN.FAKE_MISMATCH_LOSS_COEFF', args.fake_mismatch_loss_coeff])
    if args.gp_weight is not None:
        cfg_from_list(['WGAN.GP_COEFF', args.gp_weight])
    if args.text2text_weight is not None:
        cfg_from_list(['WGAN.TEXT2TEXT_WEIGHT', args.text2text_weight])
    if args.shape2shape_weight is not None:
        cfg_from_list(['WGAN.SHAPE2SHAPE_WEIGHT', args.shape2shape_weight])
    if args.learning_rate is not None:
        cfg_from_list(['TRAIN.LEARNING_RATE', args.learning_rate])
    if args.critic_lr_multiplier is not None:
        cfg_from_list(
            ['GAN.D_LEARNING_RATE_MULTIPLIER', args.critic_lr_multiplier])
    if args.decay_steps is not None:
        cfg_from_list(['TRAIN.DECAY_STEPS', args.decay_steps])
    if args.queue_capacity is not None:
        cfg_from_list(['CONST.QUEUE_CAPACITY', args.queue_capacity])
    if args.n_minibatch_test is not None:
        cfg_from_list(['CONST.N_MINIBATCH_TEST', args.n_minibatch_test])
    if args.noise_size is not None:
        cfg_from_list(['GAN.NOISE_SIZE', args.noise_size])
    if args.batch_size is not None:
        cfg_from_list(['CONST.BATCH_SIZE', args.batch_size])
    if args.summary_freq is not None:
        cfg_from_list(['TRAIN.SUMMARY_FREQ', args.summary_freq])
    if args.num_epochs is not None:
        cfg_from_list(['TRAIN.NUM_EPOCHS', args.num_epochs])
    if args.model is not None:
        cfg_from_list(['NETWORK', args.model])
    if args.optimizer is not None:
        cfg_from_list(['TRAIN.OPTIMIZER', args.optimizer])
    if args.critic_optimizer is not None:
        cfg_from_list(['GAN.D_OPTIMIZER', args.critic_optimizer])
    if args.ckpt_path is not None:
        cfg_from_list(['DIR.CKPT_PATH', args.ckpt_path])
    if args.lba_ckpt_path is not None:
        cfg_from_list(['END2END.LBA_CKPT_PATH', args.lba_ckpt_path])
    if args.val_ckpt_path is not None:
        cfg_from_list(['DIR.VAL_CKPT_PATH', args.val_ckpt_path])
    if args.log_path is not None:
        cfg_from_list(['DIR.LOG_PATH', args.log_path])
    if args.augment_max is not None:
        cfg_from_list(['TRAIN.AUGMENT_MAX', args.augment_max])
    if args.test:
        cfg_from_list(['TRAIN.AUGMENT_MAX', 0])
        cfg_from_list(['CONST.BATCH_SIZE', 1])
        cfg_from_list(['LBA.N_CAPTIONS_PER_MODEL', 1])  # NOTE: Important!
        cfg_from_list(['LBA.N_PRIMITIVE_SHAPES_PER_CATEGORY',
                       1])  # NOTE: Important!
    if args.test_npy:
        cfg_from_list(['CONST.BATCH_SIZE', 1])

    # To overwrite default variables, put the set_cfgs after all argument initializations
    if args.set_cfgs is not None:
        cfg_from_list(args.set_cfgs)
Ejemplo n.º 7
0
def main():

    args = parse_args()
    cfg.DATA_DIR = args.data_dir
    cfg.CONTEXT_FUSION = args.context_fusion
    # c_time = time.strftime('%m%d_%H%M', time.localtime())
    # if not os.path.exists(cfg.LOG_DIR):
    #     os.makedirs(cfg.LOG_DIR)
    # file_handler = logging.FileHandler(pjoin(cfg.LOG_DIR,
    #                                          args.network_name + '_%s.txt' % c_time))
    # logging.getLogger().addHandler(file_handler)

    print('------ called with args: -------')
    pprint.pprint(args)

    if args.cfg_file is not None:
        cfg_from_file(args.cfg_file)
    if args.set_cfgs is not None:
        cfg_from_list(args.set_cfgs)

    if cfg.INIT_BY_GLOVE and cfg.KEEP_AS_GLOVE_DIM:
        cfg.EMBED_DIM = cfg.GLOVE_DIM
    else:
        cfg.EMBED_DIM = args.embed_dim

    print("Using config:")
    pprint.pprint(cfg)

    if not args.randomize:
        # fix the random seeds (numpy and caffe) for reproducibility
        np.random.seed(cfg.RNG_SEED)
        tf.set_random_seed(cfg.RNG_SEED)

    imdb, roidb = GetRoidb(args.imdb_name)

    output_dir = get_output_dir(imdb, args.tag)
    print("output will be saved to `{:s}`".format(output_dir))

    # tensorboard directory where the summaries are saved during training
    tb_dir = get_output_tb_dir(imdb, args.tag)
    print('TensorFlow summaries will be saved to `{:s}`'.format(tb_dir))

    # also add validation set, but with no flipping image
    orgflip = cfg.TRAIN.USE_FLIPPED
    cfg.TRAIN.USE_FLIPPED = False
    _, valroidb = GetRoidb(args.imdbval_name)
    cfg.TRAIN.USE_FLIPPED = orgflip

    # load network
    if args.net == 'vgg16':
        net = vgg16()
    elif args.net == 'res50':
        net = resnetv1(num_layers=50)
    elif args.net == 'res101':
        net = resnetv1(num_layers=101)
    elif args.net == 'res152':
        net = resnetv1(num_layers=152)
    else:
        raise NotImplementedError

    if args.weights and not args.weights.endswith('.ckpt'):
        try:
            ckpt = tf.train.get_checkpoint_state(args.weights)
            pretrained_model = ckpt.model_checkpoint_path
        except:
            raise ValueError("NO checkpoint found in {}".format(args.weights))
    else:
        pretrained_model = args.weights

    # TODO: "imdb" may not be useful during training
    train_net(net, imdb, roidb, valroidb, output_dir, tb_dir,
              pretrained_model=pretrained_model,
              max_iters=args.max_iters)
Ejemplo n.º 8
0
def main():
    args = parse_args()

    # c_time = time.strftime('%m%d_%H%M', time.localtime())
    # if not os.path.exists(cfg.LOG_DIR):
    #     os.makedirs(cfg.LOG_DIR)
    # file_handler = logging.FileHandler(pjoin(cfg.LOG_DIR,
    #                                          args.network_name + '_%s.txt' % c_time))
    # logging.getLogger().addHandler(file_handler)

    print('------ called with args: -------')
    pprint.pprint(args)

    if args.cfg_file is not None:
        cfg_from_file(args.cfg_file)
    if args.set_cfgs is not None:
        cfg_from_list(args.set_cfgs)

    print("runing with LIMIT_RAM: {}".format(cfg.LIMIT_RAM))

    print("Using config:")
    pprint.pprint(cfg)

    if not args.randomize:
        # fix the random seeds (numpy and caffe) for reproducibility
        np.random.seed(cfg.RNG_SEED)
        tf.set_random_seed(cfg.RNG_SEED)

    if not cfg.LIMIT_RAM:
        imdb, roidb = combined_roidb(args.imdb_name)
    else:
        imdb, roidb = get_roidb_limit_ram(args.imdb_name)

    output_dir = get_output_dir(imdb, args.tag)
    print("output will be saved to `{:s}`".format(output_dir))

    # tensorboard directory where the summaries are saved during training
    tb_dir = get_output_tb_dir(imdb, args.tag)
    print('TensorFlow summaries will be saved to `{:s}`'.format(tb_dir))

    # also add validation set, but with no flipping image
    orgflip = cfg.TRAIN.USE_FLIPPED
    cfg.TRAIN.USE_FLIPPED = False
    if not cfg.LIMIT_RAM:
        _, valroidb = combined_roidb(args.imdbval_name)
    else:
        _, valroidb = get_roidb_limit_ram(args.imdbval_name)
    cfg.TRAIN.USE_FLIPPED = orgflip

    # load network
    if args.net == 'vgg16':
        net = vgg16()
    elif args.net == 'res50':
        net = resnetv1(num_layers=50)
    elif args.net == 'res101':
        net = resnetv1(num_layers=101)
    elif args.net == 'res152':
        net = resnetv1(num_layers=152)
    else:
        raise NotImplementedError

    # TODO: "imdb" may not be useful during training
    train_net(net, imdb, roidb, valroidb, output_dir, tb_dir,
              pretrained_model=args.pretrained_model,
              max_iters=args.max_iters)