Ejemplo n.º 1
0
def interp_2d_yx(image_2d,
                 row_size_new,
                 col_size_new,
                 kind=CV2_interp_type.linear,
                 kernal_size=0):
    '''2d image interpolation
    :param image_2d: 2d volume, format: yx  
    :param row_size_new:   can be call "y"
    :param col_size_new:   can be call "x"
    :param kind: interpolation methods, cv2.INTER_LINEAR cv2.INTER_NEAREST cv2.INTER_CUBIC(slow)
    :param kernel_size: used in median blurring for interpolation results. if 0, then no blurring operation
    :return: resized image volume ,its dtype is same with image_2d
    '''
    if len(image_2d.shape) != 2:
        # 输入图像的shape错误, 返回错误码
        Error.exit(ErrorCode.process_input_shape_error)

    resize_slice = cv2.resize(image_2d, (col_size_new, row_size_new),
                              interpolation=kind)
    resize_slice = resize_slice
    if kernal_size:
        # smoothes an image using the median filter
        image_new = cv2.medianBlur(resize_slice, kernal_size)
    else:
        image_new = resize_slice
    image_new = np.array(image_new, dtype=image_2d.dtype)

    return image_new
Ejemplo n.º 2
0
def anti_interp_2d_pack(image_block, info_dict: InfoDict, kernal_size=0):
    '''2d image interpolation package
    :param image_block: 3d volume, format: zyx
    :param info_dict:  should have info_dict.image_before_interp
    :param kind: interpolation methods, cv2.INTER_LINEAR cv2.INTER_NEAREST cv2.INTER_CUBIC(slow)
    :param kernel_size: used in median blurring for interpolation results. if 0, then no blurring operation
    :return image_interp: resized image volume ,its dtype is same with image_block
    :return info_dict: info_dict
    '''

    if len(image_block.shape) != 3:
        # 输入图像的shape错误, 返回错误码
        Error.exit(ErrorCode.process_input_shape_error)

    if not "image_shape_before_interp" in info_dict:
        Error.exit(ErrorCode.process_module_error)

    raw_dtype = image_block.dtype
    image_block = check_for_cv2_dtype(image_block, raw_dtype)

    origin_x = info_dict.image_shape_before_interp[2]
    origin_y = info_dict.image_shape_before_interp[1]
    image_anti_interp = np.zeros((image_block.shape[0], origin_x, origin_y),
                                 np.float32)

    for i in range(image_block.shape[0]):
        image_one = interp_2d_yx(image_block[i, :, :], origin_x, origin_y,
                                 info_dict.interp_kind, kernal_size)
        image_anti_interp[i, :, :] = image_one

    return image_anti_interp, info_dict
Ejemplo n.º 3
0
def read_slice_w_filter(dcm_path):
    try:
        if not os.path.exists(dcm_path):
            Error.exit(ErrorCode.ld_ct_path_not_exist)
        scan = pydicom.dcmread(dcm_path, force=True)
    except PermissionError:
        return None

    return is_valid_image(scan)
Ejemplo n.º 4
0
def condition_not_happen_assert(info='', error_code=None, msg=None):
    """
    条件不应该存在的断言
    """
    print(info)
    if True:
        print('The condition meet problem, this condition should not happen!')
        if error_code is not None:
            Error.warn(error_code)
        if msg is not None:
            print(msg)
Ejemplo n.º 5
0
def path_exist_assert(input_path: str, error_code=None, msg=None):
    """
    保证输入路径存在
    """
    is_exist = os.path.exists(input_path)
    if not is_exist:
        print('The input(name:%s) is not exist, path: %s' %
              (get_varname(input_path), str(input_path)))
        if error_code is not None:
            Error.warn(error_code)
        if msg is not None:
            print(msg)
Ejemplo n.º 6
0
def instance_of_assert(input_: object, type_: type, error_code=None, msg=None):
    """
    断言输入的类型是子类
    """
    if not isinstance(input_, type_):
        print(
            'The input(name:%s) not meet the required, \nexpect type:%s has instance type input type:%s'
            % (get_varname(input_), str(type_), str(type(input_))))
        if error_code is not None:
            Error.warn(error_code)
        if msg is not None:
            print(msg)
Ejemplo n.º 7
0
def type_assert(input_: object, type_: type, error_code=None, msg=None):
    """
    断言输入的类型
    """
    if type(input_) != type_:
        print(
            'The input(name:%s) type not meet the required, \nexpect type:%s, input type:%s'
            % (get_varname(input_), str(type_), str(type(input_))))
        if error_code is not None:
            Error.warn(error_code)
        if msg is not None:
            print(msg)
Ejemplo n.º 8
0
def not_None_assert(input_1: object, error_code=None, msg=None):
    """
    保证input_1 不等于 None
    """
    if input_1 is None:
        print('The input(name:%s) not meet the required, \n'
              'expect input1 is not None, \ninput1:%s' %
              (get_varname(input_1), str(input_1)))
        if error_code is not None:
            Error.warn(error_code)
        if msg is not None:
            print(msg)
Ejemplo n.º 9
0
def file_not_exist_assert(input_file: str, error_code=None, msg=None):
    """
    保证输入路径不存在
    """
    is_exist = os.path.exists(input_file)
    if is_exist:
        print('The input(name:%s) is exist, file: %s' %
              (get_varname(input_file), str(input_file)))
        if error_code is not None:
            Error.warn(error_code)
        if msg is not None:
            print(msg)
Ejemplo n.º 10
0
def equal_assert(input_1: object, input_2: object, error_code=None, msg=None):
    """
    保证input_1 等于 input_2
    """
    if input_1 != input_2:
        print('The input1(name:%s), input2(name:%s) not meet the required, \n'
              'expect input1 equal to input2, \ninput1:%s, input2:%s' %
              (get_varname(input_1), get_varname(input_2), str(input_1),
               str(input_2)))
        if error_code is not None:
            Error.warn(error_code)
        if msg is not None:
            print(msg)
Ejemplo n.º 11
0
def array2json(mask_3d, info_dict, roi_ind=0, organ_names=None):
    """
    逐层计算单个roi的物理坐标,并存储为json文件。
    :param mask_3d:
    :param info_dict:
    :param roi_ind:
    :return:
    """
    # 增加organ_names的适用性---by YY
    if organ_names is None:
        organ_names = info_dict.organ_names

    if not os.path.exists(info_dict.goal_path):
        raise Error(ErrorCode.tofile_ouput_path_not_exist)
    if not organ_names[roi_ind]:
        raise Error(ErrorCode.tofile_json_name_is_none)

    response_ind = [
        a for a in range(mask_3d.shape[0]) if np.amax(mask_3d[a]) > 0
    ]
    ###提取含有分割结果的各层的信息 #J就是slice的层号
    label_slice_list = []
    transform_matrix = grid2world_matrix(info_dict.iop, info_dict.spacing_list)

    for r in response_ind:
        slice_obj = slice_roi_contours(
            mask_3d[r],
            info_dict.sop_list[r],
            info_dict.ipp_list[r],
            transform_matrix,
            organ_names[roi_ind],
            contour_type=info_dict.contour_type,
            chain_mode=info_dict.chain_mode,
            smooth_polygon_times=info_dict.smooth_polygon_times,
            smooth_polgygon_degree=info_dict.smooth_polygon_degree)
        label_slice_list.extend(slice_obj)

    # sop_list = [info_dict.sop_list[i] for i in response_ind]
    # ipp_list = [info_dict.ipp_list[i] for i in response_ind]
    # with ProcessPoolExecutor() as executor:
    #     future_obj = executor.map(slice_roi_contours, mask_3d[response_ind],
    #                               sop_list, ipp_list,
    #                               itertools.repeat(transform_matrix, len(response_ind)),
    #                               itertools.repeat(organ_names[roi_ind], len(response_ind)),
    #                               itertools.repeat(info_dict.contour_type, len(response_ind)),
    #                               itertools.repeat(info_dict.chain_mode, len(response_ind))
    #                               )
    #     for ll_slice in future_obj:
    #         label_slice_list.extend(ll_slice)

    one_roi2json(label_slice_list, info_dict.goal_path)
Ejemplo n.º 12
0
def sort_filter_slices(info_dict, slice_data_dict):
    # 获取医院名称
    # 显示有初始有多少张ct
    num_slice_total = len(slice_data_dict)
    print('     %s %s contains %d slices' %
          (info_dict.hospital, info_dict.pid, num_slice_total))

    #  筛选有效层并排序
    order_slice_list = _sort_slices(slice_data_dict,
                                    info_dict.ipp_order_reverse)
    order_slice_list = _filter_series(order_slice_list,
                                      info_dict.include_series)
    info_dict.image_shape_raw[0] = len(order_slice_list)

    # 提取单张图片的信息
    # 获取每层的唯一标识号
    info_dict.sop_list = [str(x.sop_uid)
                          for x in order_slice_list]  # SOPInstanceUID
    # 获取每层的屋里坐标
    info_dict.ipp_list = [list(x.ipp)
                          for x in order_slice_list]  # ImagePositionPatient

    # 患者增强的识别号
    info_dict.pid_aug = '_'.join([
        str(info_dict.pid),
        str(info_dict.series_uid[-10:]),
        str(info_dict.image_shape_raw[0])
    ])
    # 显示有效层的数量
    num_slice_valid = len(order_slice_list)
    print('     Valid imaging slices: %d' % len(order_slice_list))
    if num_slice_total == 0 or num_slice_valid == 0:
        raise Error(ErrorCode.ld_ct_load_fail)
    return order_slice_list, info_dict
Ejemplo n.º 13
0
def array_bivalue_assert(input_array: np.ndarray, error_code=None, msg=None):
    """
    保证输入tuple的长度为length
    """
    # 断言保证
    type_assert(input_array, np.ndarray, error_code=error_code)

    value_num = len(np.unique(input_array))
    if value_num > 2:
        print('The input array(name:%s) is not bi value array, \n'
              'input array values:%s' %
              (get_varname(input_array), str(np.unique(input_array))))
        if error_code is not None:
            Error.warn(error_code)
        if msg is not None:
            print(msg)
Ejemplo n.º 14
0
def list_length_assert(input_: list, length: int, error_code=None, msg=None):
    """
    保证输入矩阵为x维矩阵
    """
    # 断言输入保证
    type_assert(input_, list, error_code=error_code)

    list_length = len(input_)
    if list_length != length:
        print('The input(name:%s) not meet the required, \n'
              'expect list length:%s, input list length:%s' %
              (get_varname(input_), str(length), str(list_length)))
        if error_code is not None:
            Error.warn(error_code)
        if msg is not None:
            print(msg)
Ejemplo n.º 15
0
def in_list_assert(item: object, input_list: list, error_code=None, msg=None):
    """
    保证item在input list中
    """
    # 断言保证
    type_assert(input_list, list, error_code=error_code)

    if item not in input_list:
        print('The %s,%s not meet the required, \n'
              'expect item in input list,\nitem :%s, input_list: %s' %
              (get_varname(item), get_varname(input_list), str(item),
               str(input_list)))
        if error_code is not None:
            Error.warn(error_code)
        if msg is not None:
            print(msg)
Ejemplo n.º 16
0
def type_multi_assert(input_: object,
                      type_list: list,
                      error_code=None,
                      msg=None):
    """
    断言输入类型为type list内的类型
    """
    # 断言保证
    list_type_assert(type_list, type, error_code=error_code)
    input_type = type(input_)
    if input_type not in type_list:
        print(
            'The input(name:%s) not meet the required, \nexpect type:%s, input type:%s'
            % (get_varname(input_), str(type_list), str(input_type)))
        if error_code is not None:
            Error.warn(error_code)
        if msg is not None:
            print(msg)
Ejemplo n.º 17
0
def check_shape(image,
                standar_shape=(512, 512),
                interp_kind=cv2.INTER_NEAREST):
    """
    检查图像尺寸,如果不为设定大小(512,512),则调整到设定尺寸
    :param1: image - 待检测尺寸,shape = 3
    param2: standar_shape 标准尺寸
    :param3: cv2插值方式
    :return: 调整后的图像大小
    """
    assertor.type_assert(image,
                         np.ndarray,
                         error_code=ErrorCode.process_data_type_error,
                         msg='Assert pos: check_shape module')
    img_shape = image.shape
    raw_dtype = image.dtype
    image = check_for_cv2_dtype(image, raw_dtype)

    if len(img_shape) != 3:
        # 输入图像的shape错误, 返回错误码
        Error.exit(ErrorCode.process_input_shape_error)

    if img_shape[1] == standar_shape[0] and img_shape[2] == standar_shape[1]:
        return image

    resize_image = np.zeros(shape=(image.shape[0], standar_shape[0],
                                   standar_shape[1]),
                            dtype=image.dtype)
    for i in range(image.shape[0]):
        resize_image[i, :, :] = cv2.resize(
            image[i, :, :], (standar_shape[1], standar_shape[0]),
            interpolation=interp_kind)

    resize_image = anti_check_for_cv2_dtype(resize_image, raw_dtype)

    return resize_image


# if __name__ == '__main__':
#
#     test_data = np.zeros(shape=(3,1024, 1024),dtype=np.uint32)  #np.uint16
#     image = check_shape(test_data,(512,512))
#     print('dtype:',image.dtype)
#     print(image.shape)
Ejemplo n.º 18
0
def dict_has_key_assert(key: object,
                        input_dict: dict,
                        error_code=None,
                        msg=None):
    """
    保证key在input dict的key中
    """
    # 断言保证
    type_assert(input_dict, dict, error_code=error_code)

    if key not in list(input_dict.keys()):
        print('The %s,%s not meet the required, \n'
              'expect key in input dict,\nkey :%s, input_dict: %s' %
              (get_varname(key), get_varname(input_dict), str(key),
               str(input_dict)))
        if error_code is not None:
            Error.warn(error_code)
        if msg is not None:
            print(msg)
Ejemplo n.º 19
0
def tuple_length_assert(input_tuple: tuple,
                        length: int,
                        error_code=None,
                        msg=None):
    """
    保证输入tuple的长度为length
    """
    # 断言保证
    type_assert(input_tuple, tuple, error_code=error_code)
    type_assert(length, int, error_code=error_code)

    tuple_length = len(input_tuple)
    if tuple_length != length:
        print('The input(name:%s) not meet the required, \n'
              'expect tuple length:%s, input tuple length:%s' %
              (get_varname(input_tuple), str(length), str(tuple_length)))
        if error_code is not None:
            Error.warn(error_code)
        if msg is not None:
            print(msg)
Ejemplo n.º 20
0
def array_x_dims_multi_assert(input_array: np.ndarray,
                              dims_list: list,
                              error_code=None,
                              msg=None):
    """
    保证输入矩阵为x维矩阵,x为在dims_list中的数据
    """
    # 断言输入保证
    type_assert(input_array, np.ndarray, error_code=error_code)
    type_assert(dims_list, list, error_code=error_code)

    array_dim = len(input_array.shape)
    if array_dim not in dims_list:
        print(
            'The input(name:%s) not meet the required, \nexpect dims:%s, input dims:%s'
            % (get_varname(input_array), str(dims_list), str(array_dim)))
        if error_code is not None:
            Error.warn(error_code)
        if msg is not None:
            print(msg)
Ejemplo n.º 21
0
def array_dtype_assert(input_array: np.ndarray,
                       dtype_: type,
                       error_code=None,
                       msg=None):
    """
    保证输入矩阵的dtype
    """
    # 断言保证
    type_assert(input_array, np.ndarray, error_code=error_code)
    type_assert(dtype_, type, error_code=error_code)

    array_dtype = input_array.dtype
    if array_dtype != dtype_:
        print('The input(name:%s) not meet the required, \n'
              'expect array dtype:%s, input array dtype:%s' %
              (get_varname(input_array), str(dtype_), str(array_dtype)))
        if error_code is not None:
            Error.warn(error_code)
        if msg is not None:
            print(msg)
Ejemplo n.º 22
0
def mask2csv(mask_3d, info_dict, roi_ind=0, organ_names=None):
    """
    逐层计算单个roi的物理坐标,并存储为json文件。
    :param mask_3d:
    :param info_dict:
    :param roi_ind:
    :return:
    """
    # 增加organ_names的适用性---by YY
    if organ_names is None:
        organ_names = info_dict.organ_names

    if not os.path.exists(info_dict.goal_path):
        raise Error(ErrorCode.tofile_ouput_path_not_exist)
    if not organ_names[roi_ind]:
        raise Error(ErrorCode.tofile_json_name_is_none)

    response_ind = [
        a for a in range(mask_3d.shape[0]) if np.amax(mask_3d[a]) > 0
    ]
    sop_list = [info_dict.sop_list[i] for i in response_ind]
    ipp_list = [info_dict.ipp_list[i] for i in response_ind]
    ###提取含有分割结果的各层的信息 #J就是slice的层号
    label_slice_list = []

    # for r in response_ind:
    #     slice_obj = slice_roi_contours_csv(mask_3d[r], info_dict.sop_list[r], info_dict.ipp_list[r],
    #                                     organ_names[roi_ind],
    #                                    contour_type=info_dict.contour_type,
    #                                    chain_mode = info_dict.chain_mode)
    #     label_slice_list.extend(slice_obj)
    with ProcessPoolExecutor(max_workers=16) as executor:
        future_obj = executor.map(
            slice_roi_contours_csv, mask_3d[response_ind], sop_list, ipp_list,
            itertools.repeat(organ_names[roi_ind], len(response_ind)),
            itertools.repeat(info_dict.contour_type, len(response_ind)),
            itertools.repeat(info_dict.chain_mode, len(response_ind)))
        for ll_slice in future_obj:
            label_slice_list.extend(ll_slice)

    to_csv(label_slice_list, info_dict.goal_path)
Ejemplo n.º 23
0
def array_length_assert(input_: np.ndarray,
                        length: int,
                        axis=0,
                        error_code=None,
                        msg=None):
    """
    保证输入矩阵的axis维长度为length
    """
    # 断言输入保证
    type_assert(input_, np.ndarray, error_code=error_code)
    greater_or_equal_assert(len(input_.shape), axis, error_code=error_code)

    list_length = input_.shape[axis]
    if list_length != length:
        print('The input(name:%s) not meet the required, \n'
              'expect array length:%s, input array length:%s' %
              (get_varname(input_), str(length), str(list_length)))
        if error_code is not None:
            Error.warn(error_code)
        if msg is not None:
            print(msg)
Ejemplo n.º 24
0
def array_shape_assert(input_array: np.ndarray,
                       shape: tuple,
                       error_code=None,
                       msg=None):
    """
    保证输入矩阵的shape
    """
    # 断言保证
    type_assert(input_array, np.ndarray, error_code=error_code)
    tuple_type_assert(shape, int, error_code=error_code)
    tuple_length_assert(shape, len(input_array.shape), error_code=error_code)

    array_shape = input_array.shape
    if array_shape != shape:
        print('The input(name:%s) not meet the required, \n'
              'expect array shape:%s, input array shape:%s' %
              (get_varname(input_array), str(shape), str(array_shape)))
        if error_code is not None:
            Error.warn(error_code)
        if msg is not None:
            print(msg)
Ejemplo n.º 25
0
    def notFoundHandler(self):
        """
		Sends a 404 Not Found response with a Matrix-compliant JSON error object body.
		"""
        self.send_response(404, "Not Found")
        self.send_header("Content-Type", "application/json")
        err = Error("No resource was found for this request",
                    ErrorCode.NOT_FOUND)
        response = str(err).encode() + b'\n'
        self.send_header("Content-Length", str(len(response)))
        self.end_headers()
        self.wfile.write(response)
Ejemplo n.º 26
0
def load_dcm_scan(info_dict):
    """
    读取单套CT序列,筛选出有效的dicom图像文件,提取序列信息并得到图像

    :param info_dict: 带有data_path, include_series 指定序列等字段
    :return: image_3d(按ipp_z从小到大排列的扫描图像), info_dict(添加sop_list和ipp_list)
    """

    # 1. 筛选出可用pydicom读取成功的文件
    # 扫描数据根目录,筛选出dcm数据
    # 存两个字典(key=路径,value=pydicom object)
    # path_slices_dict存断层扫描,path_rts_dict存rs
    path_slices_dicts, path_rts_dicts = scan4image_rt(info_dict.data_path)
    series_list = list(path_slices_dicts.keys())
    most_series = None
    if len(series_list) == 0:
        Error.exit(ErrorCode.ld_ct_load_fail)
    elif len(series_list) == 1:
        most_series = series_list[0]
    else:
        nb_slices_in_series = [len(path_slices_dicts[s]) for s in series_list]
        most_series = series_list[nb_slices_in_series.index(
            max(nb_slices_in_series))]

    # 2. 将pydicom类转换成自定义类,筛选出带有效图像数据的层
    slice_data_dict, info_dict.slice_path = data_in_image_scans(
        path_slices_dicts[most_series])

    # 3. 提取断层扫描数据基本信息,
    info_dict = get_case_info(info_dict, slice_data_dict)

    # 筛选图像数据并根据参数排序
    order_slice_list, info_dict = sort_filter_slices(info_dict,
                                                     slice_data_dict)

    # 4. 提取扫描图像数据
    image_3d = np.stack([s.image for s in order_slice_list], axis=0)

    return image_3d, info_dict
Ejemplo n.º 27
0
def equal_multi_assert(input_1: object,
                       input_2_list: list,
                       error_code=None,
                       msg=None):
    """
    保证input_1 等于 input_2_list中的值
    """
    type_assert(input_2_list, list, error_code=error_code)
    rst_bool = False
    for input_2 in input_2_list:
        temp_bool = (input_1 == input_2)
        rst_bool = rst_bool or temp_bool
    if not rst_bool:
        print(
            'The input1(name:%s), input2(name:%s) not meet the required, \n'
            'expect input1 equal to the value in input2 list, \ninput1:%s, input2:%s'
            % (get_varname(input_1), get_varname(input_2), str(input_1),
               str(input_2)))
        if error_code is not None:
            Error.warn(error_code)
        if msg is not None:
            print(msg)
Ejemplo n.º 28
0
def image_interp(data, target_size, interpolation):
    """插值函数(默认线性插值)
    # Arguments:
        data:待插值图像,三维数组
        target_size:插值后x、y的大小

    # Returns
        img_new:插值后的图像

    # Example
    """

    if len(np.shape(data)) != 3:
        print('DataError: the channel of data is not equal to 3')
        Error.exit(ErrorCode.process_input_shape_error)

    print('start interpolation......')

    z_old, rows_old, cols_old = np.shape(data)

    if len(target_size) == 2:
        rows_new = target_size[0]
        cols_new = target_size[1]
    elif len(target_size) == 1:
        rows_new = target_size[0]
        cols_new = target_size[0]
    else:
        rows_new = rows_old
        cols_new = cols_old

    img_new = np.zeros([z_old, rows_new, cols_new], dtype=np.float32)
    for i in range(z_old):
        # note: cv2.resize 函数的size输入为 宽(cols_new) * 高(rows_new)
        img_new[i, :, :] = cv2.resize(data[i, :, :], (cols_new, rows_new),
                                      interpolation=interpolation)

    print('complete interpolation......')
    return img_new
Ejemplo n.º 29
0
    conf = yaml.safe_load(f)

# load data
logging.info('loading data from %s' % conf['input']['filename'])
x, y, t, z = loader(conf['input']['filename'], conf['input']['variable'])

# convert time/sla to desired units
tconv = t * conf['t_fact'] + conf['t_offset']
zconv = z * conf['z_fact']

# init errors
logging.info('init errors')
err_dict = {}
for err in conf['errors']:
    logging.debug('init error %s' % err)
    err_dict[err] = Error(conf[err])

# variables to store results
nx, ny, nt = len(x), len(y), len(t)
ng = nx * ny
trend, trendci = np.full((nx, ny), np.nan, dtype=float), np.full((nx, ny),
                                                                 np.nan,
                                                                 dtype=float)
accel, accelci = np.full((nx, ny), np.nan, dtype=float), np.full((nx, ny),
                                                                 np.nan,
                                                                 dtype=float)
covariances = np.full((nx, ny, nt, nt), np.nan, dtype=float)

# loop through grid points
logging.info('going through the grid...')
cnt = 1
Ejemplo n.º 30
0
def crop_by_size_and_shift(imgs, image_size, center=None, pixely=0, pixelx=0):
    '''
    剪切函数,相当于原来的cutting(),pixelx、pixely的移动值是相对图像中心
    注意参数次序和原来的cutting函数不同,shift参数不用传入
    :param imgs: 需要裁剪的数据
    :param image_size: 需要的图像大小
    :param pixely: 偏移y
    :param pixelx: 偏移x
    :return:
    '''

    if len(imgs.shape) == 2:  # 2D image
        imgs = imgs.copy()
        image_sizeY = image_size[0]
        image_sizeX = image_size[1]

        if center is None:
            center = [imgs.shape[0] // 2, imgs.shape[1] // 2]

        pixely = int(center[0] - imgs.shape[0] // 2) + pixely
        pixelx = int(center[1] - imgs.shape[1] // 2) + pixelx

        #    z, x, y = np.shape(imgs)
        y, x = np.shape(imgs)
        shift = np.max([
            abs(pixely),
            abs(pixelx),
            np.max((abs(y - image_sizeY), abs(x - image_sizeX)))
        ])
        judge = sum([
            y > (image_sizeY + abs(pixely) * 2), x >
            (image_sizeX + abs(pixelx) * 2)
        ])
        imgs_new = []
        image_std = imgs
        #    for i, image_std in enumerate(imgs):
        if judge == 2:
            image_std = image_std[int((y - image_sizeY) / 2 +
                                      pixely):int((y + image_sizeY) / 2 +
                                                  pixely),
                                  int((x - image_sizeX) / 2 +
                                      pixelx):int((x + image_sizeX) / 2) +
                                  pixelx]
        #        imgs_new.append(image_std)
        else:
            image_new = np.min(image_std) * np.ones(
                [image_sizeY + shift * 2, image_sizeX + shift * 2],
                dtype=np.int32)
            image_new[int((image_sizeY + shift * 2 - y) /
                          2):int((image_sizeY + shift * 2 - y) / 2) + y,
                      int((image_sizeX + shift * 2 - x) /
                          2):int((image_sizeX + shift * 2 - x) / 2) +
                      x] = image_std
            y1, x1 = np.shape(image_new)
            image_std = image_new[int((y1 - image_sizeY) / 2 +
                                      pixely):int((y1 + image_sizeY) / 2 +
                                                  pixely),
                                  int((x1 - image_sizeX) / 2 +
                                      pixelx):int((x1 + image_sizeX) / 2) +
                                  pixelx]

        #    imgs_new = np.array(imgs_new, np.float32)
        imgs_new = image_std

    elif len(imgs.shape) == 3:  # 3D image
        imgs = imgs.copy()
        image_sizeY = image_size[0]
        image_sizeX = image_size[1]

        if center is None:
            center = [imgs.shape[1] // 2, imgs.shape[2] // 2]

        pixely = int(center[0] - imgs.shape[1] // 2) + pixely
        pixelx = int(center[1] - imgs.shape[2] // 2) + pixelx

        z, y, x = np.shape(imgs)
        #        x, y = np.shape(imgs)
        shift = np.max([
            abs(pixely),
            abs(pixelx),
            np.max((abs(y - image_sizeY), abs(x - image_sizeX)))
        ])
        judge = sum([
            y > (image_sizeY + abs(pixely) * 2), x >
            (image_sizeX + abs(pixelx) * 2)
        ])
        imgs_new = []
        image_std = imgs
        if judge == 2:
            for i, image_std in enumerate(imgs):
                image_std = image_std[int((y - image_sizeY) / 2 +
                                          pixely):int((y + image_sizeY) / 2 +
                                                      pixely),
                                      int((x - image_sizeX) / 2 +
                                          pixelx):int((x + image_sizeX) / 2) +
                                      pixelx]
                imgs_new.append(image_std)
        else:
            for i, image_std in enumerate(imgs):
                # 按最小值填补imgs外不足部分
                image_new = np.min(image_std) * np.ones(
                    [image_sizeY + shift * 2, image_sizeX + shift * 2],
                    dtype=np.int32)
                image_new[int((image_sizeY + shift * 2 - y) /
                              2):int((image_sizeY + shift * 2 - y) / 2) + y,
                          int((image_sizeX + shift * 2 - x) /
                              2):int((image_sizeX + shift * 2 - x) / 2) +
                          x] = image_std
                y1, x1 = np.shape(image_new)
                image_std = image_new[int((y1 - image_sizeY) / 2 +
                                          pixely):int((y1 + image_sizeY) / 2 +
                                                      pixely),
                                      int((x1 - image_sizeX) / 2 +
                                          pixelx):int((x1 + image_sizeX) / 2) +
                                      pixelx]
                imgs_new.append(image_std)

        imgs_new = np.array(imgs_new)
    else:
        Error.exit(ErrorCode.process_input_shape_error)

    return imgs_new