96983520312774506326239578318016984801869478851843 85861560789112949495459501737958331952853208805511 12540698747158523863050715693290963295227443043557 66896648950445244523161731856403098711121722383113 62229893423380308135336276614282806444486645238749 30358907296290491560440772390713810515859307960866 70172427121883998797908792274921901699720888093776 65727333001053367881220235421809751254540594752243 52584907711670556013604839586446706324415722155397 53697817977846174064955149290862569321978468622482 83972241375657056057490261407972968652414535100474 82166370484403199890008895243450658541227588666881 16427171479924442928230863465674813919123162824586 17866458359124566529476545682848912883142607690042 24219022671055626321111109370544217506941658960408 07198403850962455444362981230987879927244284909188 84580156166097919133875499200524063689912560717606 05886116467109405077541002256983155200055935729725 71636269561882670428252483600823257530420752963450""" from lib import euler max_ = 0 n = n.replace('\n', '') for i in range(0, len(n)-4): substring = n[i:i+5] seq = [int(x) for x in [c for c in substring]] product = euler.product(seq) max_ = max(product, max_) print max_
for row in grid_.strip().splitlines(): row_ = [] for cell in row.split(' '): row_ += [int(cell)] grid += [row_] p = 0 for i, row in enumerate(grid): for j, cell in enumerate(row): # we have four cases to consider: # horizontal (right), vertical (down), diagonal-up and diagonal-down # it doesn't matter which way we choose for diagonal, so we'll go right # with those we cover the entire grid. # do we have space to go right or down/up? right = j < len(row) - 4 down = i < len(grid) - 4 up = i >= 4 if right: p = max(p, euler.product(row[j:j+4])) if down: p = max(p, euler.product( [grid[i+x][j] for x in range(4)] ) ) # diagonal right-down if right and down: p = max(p, euler.product( [grid[i+x][j+x] for x in range(4)] ) ) # diagonal right-up if right and up: p = max(p, euler.product( [grid[i-x][j+x] for x in range(4)] ) ) print p
from lib import euler factorial_100 = euler.product(range(1, 101)) print sum([int(x) for x in str(factorial_100)])