Ejemplo n.º 1
0
def analyzeImage(original):
	scaleImage = cv.cvCreateImage(cv.cvSize(int(original.width*scale), int(original.height*scale)), 8, 3)
	cv.cvResize(original, scaleImage)

	# Create 1-channel image for the egdes
	edgeImage = cv.cvCreateImage(cv.cvGetSize(scaleImage), 8, 1)

	# Retrieve edges
	edgeDetector.findBWEdges(scaleImage, edgeImage, edgeThreshold1, edgeThreshold2)

	# Get cuts
	cuts = lib.findGoldenMeans(cv.cvGetSize(scaleImage))

	# Run along
	allComponents = []
	for cut in cuts:
		cutComponents = analyzeCut(scaleImage, edgeImage, cut)
		allComponents.append(cutComponents)

	# Get the collected component_dictionaries
	for dict in allComponents:
		lib.drawBoundingBoxes(original, dict, scale)

	# Draw the margins
	for cut in cuts:
		lib.drawMargin(original, cut, margin, scale)
		#include if super margen is need to drawn
		#lib.drawMargin(original, cut, superMargin, scale)

	return (original, allComponents)
Ejemplo n.º 2
0
image = highgui.cvLoadImage (filename)

if not image:
	print "Error loading image '%s'" % filename
	print ""
	sys.exit(-1)

threshold1 = 70;
threshold2 = 70;
<<<<<<< HEAD
out = cv.cvCreateImage(cv.cvGetSize(image), 8, 3)
edgeDetector.findEdges(image, out, threshold1, threshold2)

print "Finding the golden means in the picture"

lines = lib.findGoldenMeans(cv.cvGetSize(image))

# Define cut
cut = lines[0]

print "Test plot and line scanner methods"
points = lineScanner.naiveLineScanner(out, cut)

out = highgui.cvLoadImage (filename)

comp_dict = {}
featureDetector.floodFillLine(image, out, points, cut, lo, up, comp_dict)

# Set margin
margin = 15