Ejemplo n.º 1
0
    def propagate(self, source, dists, c_matrix):
        propagation = [None] * (max(source.keys()) + 1)

        execution_order = hoplite_utils.get_execution_order(source)

        for elem in execution_order:
            if source[elem]['op'] == 'input':
                propagation[elem] = dists[self.input_rvars[elem]]
            if source[elem]['op'] == 'const':
                propagation[elem] = {
                    sympy.S(1.0): float(source[elem]['value'])
                }
            if source[elem]['op'] == 'output':
                propagation[elem] = propagation[source[elem]['preds'][0]]
            if source[elem]['op'] == 'add':
                propagation[elem] = pce_ops.add(
                    propagation[source[elem]['preds'][0]],
                    propagation[source[elem]['preds'][1]])
            if source[elem]['op'] == 'sub':
                propagation[elem] = pce_ops.sub(
                    propagation[source[elem]['preds'][0]],
                    propagation[source[elem]['preds'][1]])
            if source[elem]['op'] == 'mul':
                propagation[elem] = pce_ops.mul(
                    propagation[source[elem]['preds'][0]],
                    propagation[source[elem]['preds'][1]], c_matrix)
            if source[elem]['op'] == 'noise':
                propagation[elem] = pce_ops.add(
                    propagation[source[elem]['preds'][0]],
                    self.noise_dists[source[elem]['symbol']])

        return propagation
Ejemplo n.º 2
0
    def _run_model(self, path, domain):
        start_time = time.time()
        propagation = self.propagate(
            path['path']['nodes'], domain,
            self.clean_c_matrix)  # TODO: Generate C matrixes "on the fly"
        clean_outputs = {x: propagation[x] for x in path['path']['outputs']}

        # Generate system graphs with noises
        # We don't want to add noises to the outputs.
        nodes_to_add_noise = [
            x for x in path['path']['nodes'].keys()
            if not x in path['path']['outputs']
        ]

        # Generate the subsets of noises that will be introduced together.
        if not self.partitioner == None:
            noise_groups = self.partitioner.get_partitions(
                path['path'], nodes_to_add_noise, self.partition_size)
        else:
            noise_groups = [nodes_to_add_noise]

        noise_propagations = []
        for group in noise_groups:
            group_graph = copy.deepcopy(path['path'])
            self.add_noises_to(group, group_graph)
            used_inputs = [
                self.input_to_rvars[i] for i in path['path']['inputs']
            ]
            # Generate C matrix for each group of random variables.
            noised_c_matrix = c_matrix.c_matrix(
                used_inputs + [
                    self.noise_equivs['n_' + str(v)][0]
                    for v in group if 'n_' + str(v) in self.noise_equivs
                ], self.order)
            # Propagate the PCE coefficients through the system.
            iter_coeffs = dict(domain.items() + self.noise_dists.items())
            noise_propagations.append(
                self.propagate(group_graph['nodes'], iter_coeffs,
                               noised_c_matrix))

            # Update the expectances with the results from this iteration.
            for x in noised_c_matrix.expectances:
                self.noised_expectances[x] = noised_c_matrix.expectances[x]

        noised_outputs = {}
        for output in path['path']['outputs']:
            output_result = {}
            for result in noise_propagations:
                noised_output = result[output]
                output_result = pce_ops.add(
                    output_result,
                    pce_ops.sub(noised_output, propagation[output]))
                noised_outputs[output] = pce_ops.add(output_result,
                                                     propagation[output])

        exeution_time = time.time() - start_time
        print("Propagating generic domain: %s seconds" % exeution_time)

        return (clean_outputs, noised_outputs)
Ejemplo n.º 3
0
    def propagate(self, source, c_matrix):
        nodes = source['nodes']
        propagation = [None] * (max(source['nodes'].keys()) + 1)

        execution_order = hoplite_utils.get_execution_order(nodes)

        for elem in execution_order:
            if nodes[elem]['op'] == 'input':
                propagation[elem] = self.input_dists[self.input_rvars[elem]]
            if nodes[elem]['op'] == 'const':
                propagation[elem] = {sympy.S(1.0): float(nodes[elem]['value'])}
            if nodes[elem]['op'] == 'output':
                propagation[elem] = propagation[nodes[elem]['preds'][0]]
            if nodes[elem]['op'] == 'add':
                propagation[elem] = pce_ops.add(
                    propagation[nodes[elem]['preds'][0]],
                    propagation[nodes[elem]['preds'][1]])
            if nodes[elem]['op'] == 'sub':
                propagation[elem] = pce_ops.sub(
                    propagation[nodes[elem]['preds'][0]],
                    propagation[nodes[elem]['preds'][1]])
            if nodes[elem]['op'] == 'mul':
                propagation[elem] = pce_ops.mul(
                    propagation[nodes[elem]['preds'][0]],
                    propagation[nodes[elem]['preds'][1]], c_matrix)
            if nodes[elem]['op'] == 'noise':
                propagation[elem] = pce_ops.add(
                    propagation[nodes[elem]['preds'][0]],
                    self.noise_dists[nodes[elem]['symbol']])
            if nodes[elem]['op'] == 'div':
                print nodes[elem]
                print propagation[nodes[elem]['preds'][0]]
                print propagation[nodes[elem]['preds'][1]]
                sys.exit()

        return propagation
Ejemplo n.º 4
0
    def compute(self):
        # # Generate C matrix for clean system.
        # clean_c_matrix = c_matrix.c_matrix(self.input_rvars, self.order)
        # # Propagate signal values.
        # self.signal_propagation = self.propagate(self.clean_source, clean_c_matrix)

        # Generate system graphs with noises
        # We don't want to add noises to the outputs.
        nodes_to_add_noise = [
            x for x in self.clean_source['nodes'].keys()
            if not x in self.clean_source['outputs']
            and not self.clean_source['nodes'][x]['op'] == 'const'
        ]

        # Generate the subsets of noises that will be introduced together.
        if not self.partitioner == None:
            noise_groups = self.partitioner.get_partitions(
                self.clean_source, nodes_to_add_noise, self.partition_size)
        else:
            noise_groups = [nodes_to_add_noise]

        print noise_groups

        sys.exit()

        noise_propagations = []
        for group in noise_groups:
            group_graph = copy.deepcopy(self.clean_source)
            self.add_noises_to(group, group_graph)
            # Generate C matrix for each group of random variables.
            noised_c_matrix = c_matrix.c_matrix(
                self.input_rvars +
                [self.noise_equivs['n_' + str(v)][0] for v in group],
                self.order)
            # Propagate the PCE coefficients through the system.
            noise_propagations.append(
                self.propagate(group_graph, noised_c_matrix))
            print len(noise_propagations)

        for output in self.clean_source['outputs']:
            output_result = {}
            for result in noise_propagations:
                noised_output = result[output]
                output_result = pce_ops.add(
                    output_result,
                    pce_ops.sub(noised_output,
                                self.signal_propagation[output]))
                print '-----:', noised_output
            self.noised_outputs[output] = pce_ops.add(
                output_result, self.signal_propagation[output])

        self.noise_inputs = sorted(self.noise_inputs,
                                   key=lambda x: int(x.split('_')[1]))
        self.noise_rvars = [self.noise_equivs[x][0] for x in self.noise_inputs]
        self.noise_wlvars = [
            self.noise_equivs[x][1] for x in self.noise_inputs
        ]

        self.num_noises = len(self.noise_rvars)
        self.computed = True

        for o in self.noised_outputs:
            print o, ':', self.noised_outputs[o]
Ejemplo n.º 5
0
    def apply_model(self, path, domain, j_k=1.0):

        # Generate system graphs with noises
        # We don't want to add noises to the outputs.
        nodes_to_add_noise = [
            x for x in path['path']['nodes'].keys()
            if not x in path['path']['outputs']
        ]

        # Generate the subsets of noises that will be introduced together.
        if not self.partitioner == None:
            noise_groups = self.partitioner.get_partitions(
                path['path'], nodes_to_add_noise, self.partition_size)
        else:
            noise_groups = [nodes_to_add_noise]

        print 'Noise groups:', noise_groups

        # Partition the current path with ME-gPC and work with the
        #  returned list.
        me_gpc_partitions = self.get_me_gpc_partitions(path, domain)

        print len(me_gpc_partitions
                  ), "ME-gPC partitions found in this execution path."

        # Solve the system for each partition.
        outputs = []
        for partition in me_gpc_partitions:
            print 'Studying ME-gPC partition', len(outputs) + 1, 'out of', len(
                me_gpc_partitions)
            clean_outputs = {
                x: partition['propagation'][x]
                for x in path['path']['outputs']
            }

            noise_propagations = []
            for group in noise_groups:
                group_graph = copy.deepcopy(path['path'])
                self.add_noises_to(group, group_graph)
                used_inputs = [
                    self.input_to_rvars[i] for i in path['path']['inputs']
                ]
                # Generate C matrix for each group of random variables.
                noised_c_matrix = c_matrix.c_matrix(
                    used_inputs +
                    [self.noise_equivs['n_' + str(v)][0] for v in group],
                    self.order)
                # Propagate the PCE coefficients through the system.
                iter_coeffs = dict(partition['distributions'].items() +
                                   self.noise_dists.items())
                noise_propagations.append(
                    self.propagate(group_graph['nodes'], iter_coeffs,
                                   noised_c_matrix))

                # Update the expectances with the results from this iteration.
                for x in noised_c_matrix.expectances:
                    self.noised_expectances[x] = noised_c_matrix.expectances[x]

            noised_outputs = {}
            for output in path['path']['outputs']:
                output_result = {}
                for result in noise_propagations:
                    noised_output = result[output]
                    output_result = pce_ops.add(
                        output_result,
                        pce_ops.sub(noised_output,
                                    partition['propagation'][output]))
                noised_outputs[output] = pce_ops.add(
                    output_result, partition['propagation'][output])

            outputs.append({
                'clean_outputs': clean_outputs,
                'noised_outputs': noised_outputs,
                'j_k': partition['j_k']
            })

        return outputs
Ejemplo n.º 6
0
    def apply_model(self, path, domain, in_i, in_j, j_k=1.0):

        self.mutex.acquire()

        print 'The propagated values are, indeed, i: {}, j: {}.'.format(
            str(in_i), str(in_j))

        local_path = copy.deepcopy(path)
        local_domain = copy.deepcopy(domain)
        self.mutex.release()

        # Generate system graphs with noises
        # We don't want to add noises to the outputs.
        nodes_to_add_noise = [
            x for x in local_path['path']['nodes'].keys()
            if not x in local_path['path']['outputs']
        ]

        # Generate the subsets of noises that will be introduced together.
        if not self.partitioner == None:
            noise_groups = self.partitioner.get_partitions(
                local_path['path'], nodes_to_add_noise, self.partition_size)
        else:
            noise_groups = [nodes_to_add_noise]

        # Partition the current path with ME-gPC and work with the
        #  returned list.
        me_gpc_partitions = self.get_me_gpc_partitions(local_path,
                                                       local_domain)

        self.mutex.acquire()
        print len(me_gpc_partitions
                  ), "ME-gPC partitions found in execution path {}.".format(
                      str(in_i))
        self.mutex.release()

        # Solve the system for each partition.
        outputs = []
        for partition in me_gpc_partitions:
            self.mutex.acquire()
            print 'Studying ME-gPC partition', str(
                me_gpc_partitions.index(partition) +
                1), 'out of', len(me_gpc_partitions)
            self.mutex.release()
            clean_outputs = {
                x: partition['propagation'][x]
                for x in local_path['path']['outputs']
            }

            noise_propagations = []
            for group in noise_groups:
                self.mutex.acquire()
                print len(
                    me_gpc_partitions
                ), "Execution path {}, subdomain {} - Studying group {} of {}.".format(
                    str(in_i), str(in_j), str(noise_groups.index(group) + 1),
                    str(len(noise_groups)))
                self.mutex.release()

                group_graph = copy.deepcopy(local_path['path'])
                self.add_noises_to(group, group_graph)
                used_inputs = [
                    self.input_to_rvars[i]
                    for i in local_path['path']['inputs']
                ]
                # Generate C matrix for each group of random variables.
                noised_c_matrix = c_matrix.c_matrix(
                    used_inputs +
                    [self.noise_equivs['n_' + str(v)][0] for v in group],
                    self.order)
                # Propagate the PCE coefficients through the system.
                iter_coeffs = dict(partition['distributions'].items() +
                                   self.noise_dists.items())
                noise_propagations.append(
                    self.propagate(group_graph['nodes'], iter_coeffs,
                                   noised_c_matrix))

                # Update the expectances with the results from this iteration.
                for x in noised_c_matrix.expectances:
                    self.mutex.acquire()
                    self.noised_expectances[x] = noised_c_matrix.expectances[x]
                    self.mutex.release()

            noised_outputs = {}
            for output in local_path['path']['outputs']:
                output_result = {}
                for result in noise_propagations:
                    noised_output = result[output]
                    output_result = pce_ops.add(
                        output_result,
                        pce_ops.sub(noised_output,
                                    partition['propagation'][output]))
                noised_outputs[output] = pce_ops.add(
                    output_result, partition['propagation'][output])

            outputs.append({
                'clean_outputs': clean_outputs,
                'noised_outputs': noised_outputs,
                'j_k': partition['j_k']
            })

        k = 1
        for solution in outputs:
            pickle_file = os.path.join(
                self.dump_files,
                'solution_{}_{}_{}'.format(str(in_i), str(j), str(k)))
            with open(pickle_file, 'w') as sol:
                pickle.dump(solution, sol)
                self.mutex.acquire()
                self.solution_files.update({(i, j, k): pickle_file})
                self.mutex.release()
            k += 1