Ejemplo n.º 1
0
def predict_example(fd, recogniter):
    """
    全ての関数から得たデータをnetwrokに入力, 関数を予測する.
    最終的に, 関数毎の平均正解率と入力に対する正解率を表示する.
    neuronの選択性が得られているかを表示.

    """
    plotter    = Plotter()
    result = defaultdict(list)
    plotter.initialize({
        'xy_value':{
            'ylim': [0,100],
            'sub_title': ['value']},
        'likelihood':{
            'ylim': [0,1],
            'sub_title': fd.function_list.keys()},
        }, movable=False)

    for ftype in fd.function_list.keys():
        print ftype
        data = fd.get_data(ftype)
        for x, y in data:
            input_data = {
                    'xy_value': [x, y],
                    'x_value': x,
                    'y_value': y,
                    'ftype': None
                    }
            inferences = recogniter.run(input_data, learn=False)


            # print
            input_data['ftype'] = ftype
            recogniter.print_inferences(input_data, inferences)

            # for result summary
            tmp = inferences[ "classifier_" + recogniter.selectivity]['likelihoodsDict'][ftype]
            result[ftype].append(tmp)

            # for plot
            plotter.write(title="xy_value", x_value={'value': x}, y_value={'value': y})
            plotter.write(title="likelihood", y_value=inferences[ "classifier_" + recogniter.selectivity]['likelihoodsDict'])

        plotter.show(save_dir='./docs/images/multi_layer/', file_name='2layer-'+ftype+'.png')
        plotter.reset()


    # write result summary
    import numpy
    print '### result'
    for title , data in result.items():
        print title , " : ",
        print numpy.mean(data)

    # print evaluation summary
    for name in recogniter.dest_resgion_data.keys():
        print '### ', name
        recogniter.evaluation[name].print_summary()
Ejemplo n.º 2
0
def predict_example_2(fd, recogniter):
    """
    データはランダムに選択された関数から取得してnetwrokに入力.
    関数を確率を表示する.
    """
    plotter_2    = Plotter()
    result = defaultdict(list)

    plotter_2.initialize({
        'xy_value':{
            'ylim': [0,100],
            'sub_title': ['value']},
        'likelihood':{
            'ylim': [0,1],
            'sub_title': fd.function_list.keys()},
        }, movable=True)

    #for ftype in fd.function_list.keys():
    print '################"'
    for idx in range(100):
        ftype = fd.romdom_choice()
        data  = fd.get_data(ftype)
        for x, y in data:
            input_data = {
                    'xy_value': [x, y],
                    'x_value': x,
                    'y_value': y,
                    'ftype': None
                    }
            inferences = recogniter.run(input_data, learn=False)

            # print
            input_data['ftype'] = ftype
            recogniter.print_inferences(input_data, inferences)

            tmp = inferences[ "classifier_" + recogniter.selectivity]['likelihoodsDict']
            plotter_2.write_draw(title='xy_value',   x_value={'value': x + 100 * idx}, y_value={'value': y})
            plotter_2.write_draw(title='likelihood', x_value=dict([(sub, x + 100 * idx) for sub in tmp.keys()]),  y_value=tmp)
Ejemplo n.º 3
0
def main():
    type_a_data = [2] * 10 + [50] * 30
    type_b_data = [1] * 10 + [50] * 30

    data_set = {'a': type_a_data, 'b': type_b_data}

    recogniter = FunctionRecogniter()

    plotter = Plotter()
    result = defaultdict(list)
    plotter.initialize(
        {
            'anomaly': {
                'ylim': [0, 1],
                'sub_title': ['a', 'b']
            },
            'output-differ': {
                'ylim': [0, 1],
                'sub_title': ['a', 'b']
            },
            'first': {
                'ylim': [0, 100],
                'sub_title': ['a', 'b']
            },
        },
        movable=True)

    # トレーニング
    for i in range(100):
        anomaly_mean = {}
        output_differ_mean = {}
        first_input = {}
        for ftype, data in data_set.items():
            tmp_anomaly = []
            tmp_output_differ = []
            first_input_cnt = 0
            for x, y in enumerate(data):
                input_data = {
                    'xy_value': [x, y],
                    'x_value': x,
                    'y_value': y,
                    'ftype': ftype
                }
                inferences = recogniter.run(input_data, learn=True)

                # for plot
                tmp_anomaly.append(inferences['anomaly']['region1'])
                if len(inferences["output_differ"]) == 0:
                    first_input_cnt += 1
                else:
                    tmp_output_differ.append(
                        inferences["output_differ"]['region1'])

                # print
                #recogniter.print_inferences(input_data, inferences)
            recogniter.reset()

            # for plot
            anomaly_mean[ftype] = sum(tmp_anomaly) / len(tmp_anomaly)
            output_differ_mean[ftype] = sum(tmp_output_differ) / len(
                tmp_output_differ)
            first_input[ftype] = first_input_cnt

        plotter.write_draw(title='anomaly',
                           x_value={
                               'a': i,
                               'b': i
                           },
                           y_value=anomaly_mean)
        plotter.write_draw(title='output-differ',
                           x_value={
                               'a': i,
                               'b': i
                           },
                           y_value=output_differ_mean)
        plotter.write_draw(title='first',
                           x_value={
                               'a': i,
                               'b': i
                           },
                           y_value=first_input)

        # 予測
        #if i % 10 == 0:
        print
        print '##################### ', i
        predict_example_4(data_set, recogniter)

    plotter.show()
def main():
    type_a_data = [2] * 10 + [50] * 30
    type_b_data = [1] * 10 + [50] * 30

    data_set  = {'a': type_a_data, 'b':type_b_data}

    recogniter = FunctionRecogniter()

    plotter    = Plotter()
    result = defaultdict(list)
    plotter.initialize({
        'anomaly':{
            'ylim': [0,1],
            'sub_title': ['a', 'b']},
        'output-differ':{
            'ylim': [0,1],
            'sub_title': ['a', 'b']},
        'first':{
            'ylim': [0,100],
            'sub_title': ['a', 'b']},
        }, movable=True)

    # トレーニング
    for i in range(100):
        anomaly_mean = {}
        output_differ_mean = {}
        first_input = {}
        for ftype, data in data_set.items():
            tmp_anomaly = []
            tmp_output_differ = []
            first_input_cnt = 0
            for x, y in enumerate(data):
                input_data = {
                        'xy_value': [x, y],
                        'x_value': x,
                        'y_value': y,
                        'ftype': ftype
                        }
                inferences = recogniter.run(input_data, learn=True)

                # for plot
                tmp_anomaly.append(inferences['anomaly']['region1'] )
                if len(inferences["output_differ"]) == 0:
                    first_input_cnt += 1
                else:
                    tmp_output_differ.append(inferences["output_differ"]['region1'])

                # print
                #recogniter.print_inferences(input_data, inferences)
            recogniter.reset()

            # for plot
            anomaly_mean[ftype]       = sum(tmp_anomaly) / len(tmp_anomaly)
            output_differ_mean[ftype] = sum(tmp_output_differ) / len(tmp_output_differ)
            first_input[ftype] =  first_input_cnt

        plotter.write_draw(title='anomaly', x_value={'a':i, 'b':i}, y_value=anomaly_mean)
        plotter.write_draw(title='output-differ', x_value={'a':i, 'b':i}, y_value=output_differ_mean)
        plotter.write_draw(title='first', x_value={'a':i, 'b':i}, y_value=first_input)


        # 予測
        #if i % 10 == 0:
        print
        print '##################### ', i
        predict_example_4(data_set, recogniter)

    plotter.show()
Ejemplo n.º 5
0
def predict_example_3(fd, recogniter):
    """
    各層の統計的特徴を比較する.

    1. 各層のclassifier結果のgraph表示.
    2.

    """
    plotter    = Plotter()
    result = defaultdict(lambda: defaultdict(list))
    plotter.initialize({
        # 'selectivity_center':{
        #     'ylim': [0,100],
        #     'sub_title': recogniter.dest_resgion_data.keys() },
        # 'selectivity_outside':{
        #     'ylim': [0,100],
        #     'sub_title': recogniter.dest_resgion_data.keys() },
        'xy_value':{
            'ylim': [0,100],
            'sub_title': ['value']},
        'likelihood':{
            'ylim': [0,1],
            'sub_title': recogniter.dest_resgion_data.keys() },
        }, movable=False)

    for ftype in fd.function_list.keys():
        print ftype
        data = fd.get_data(ftype)
        for x, y in data:
            input_data = {
                    'xy_value': [x, y],
                    'x_value': x,
                    'y_value': y,
                    'ftype': None
                    }
            inferences = recogniter.run(input_data, learn=False)

            # print
            input_data['ftype'] = ftype
            recogniter.print_inferences(input_data, inferences)

            # for result summary
            for name in recogniter.dest_resgion_data.keys():
                tmp = inferences[ "classifier_" + name ]['likelihoodsDict'][ftype]
                result[name][ftype].append(tmp)

            # for plot
            plotter.write(title="xy_value", x_value={'value': x}, y_value={'value': y})
            tmp = {}
            for name in recogniter.dest_resgion_data.keys():
                class_name = "classifier_" + name
                tmp[name] = inferences[class_name]['likelihoodsDict'][ftype]
            plotter.write(title="likelihood", y_value=tmp)

        # # for plot
        # x_tmp = {}
        # y_tmp = {}
        # for name in recogniter.dest_resgion_data.keys():
        #     x_tmp[name] = recogniter.evaluation[name].get_selectivity()[ftype]['x']
        #     y_tmp[name] = recogniter.evaluation[name].get_selectivity()[ftype]['y']
        # plotter.add(title="selectivity_center", x_values=x_tmp, y_values=y_tmp)
        #
        # x_tmp2 = {}
        # y_tmp2 = {}
        # for name in recogniter.dest_resgion_data.keys():
        #     x_tmp2[name] = recogniter.evaluation_2[name].get_selectivity()[ftype]['x']
        #     y_tmp2[name] = recogniter.evaluation_2[name].get_selectivity()[ftype]['y']
        # plotter.add(title="selectivity_outside", x_values=x_tmp2, y_values=y_tmp2)

        plotter.show(save_dir='./docs/images/multi_layer/', file_name='each-layer-'+ftype+'.png')
        plotter.reset()


    # write result summary
    import numpy
    print '### result'
    for name, datas in result.items():
        print '#### ', name
        for title ,data in datas.items():
            print title , " : ",
            print numpy.mean(data)

    # print evaluation summary
    for name in recogniter.dest_resgion_data.keys():
        print '### ', name
        recogniter.evaluation[name].print_summary()