Ejemplo n.º 1
0
def output(partId):
    # Random Test Cases
    X = np.stack([
        np.ones(20),
        np.exp(1) * np.sin(np.arange(1, 21)),
        np.exp(0.5) * np.cos(np.arange(1, 21))
    ],
                 axis=1)
    y = (np.sin(X[:, 0] + X[:, 1]) > 0).astype(float)
    Xm = np.array([[-1, -1], [-1, -2], [-2, -1], [-2, -2], [1, 1], [1, 2],
                   [2, 1], [2, 2], [-1, 1], [-1, 2], [-2, 1], [-2, 2], [1, -1],
                   [1, -2], [-2, -1], [-2, -2]])
    ym = np.array([0, 0, 0, 0, 1, 1, 1, 1, 2, 2, 2, 2, 3, 3, 3, 3])
    t1 = np.sin(np.reshape(np.arange(1, 25, 2), (4, 3), order='F'))
    t2 = np.cos(np.reshape(np.arange(1, 41, 2), (4, 5), order='F'))
    if partId == '1':
        J, grad = lrCostFunction(np.array([0.25, 0.5, -0.5]), X, y, 0.1)
        out = formatter('%0.5f ', J)
        out += formatter('%0.5f ', grad)
    elif partId == '2':
        out = formatter('%0.5f ', oneVsAll(Xm, ym, 4, 0.1))
    elif partId == '3':
        out = formatter('%0.5f ', predictOneVsAll(t1, Xm))
    elif partId == '4':
        out = formatter('%0.5f ', predict(t1, t2, Xm))
    return out
Ejemplo n.º 2
0
def output(partId):
    # Random Test Cases
    x1 = np.sin(np.arange(1, 11))
    x2 = np.cos(np.arange(1, 11))
    ec = 'the quick brown fox jumped over the lazy dog'
    wi = np.abs(np.round(x1 * 1863)).astype(int)
    wi = np.concatenate([wi, wi])
    if partId == '1':
        sim = gaussianKernel(x1, x2, 2)
        out = formatter('%0.5f ', sim)
    elif partId == '2':
        mat = scipy.io.loadmat('ex6data3.mat')
        X = mat['X']
        y = mat['y'].ravel()
        Xval = mat['Xval']
        yval = mat['yval'].ravel()
        C, sigma = dataset3Params(X, y, Xval, yval)
        out = formatter('%0.5f ', C)
        out += formatter('%0.5f ', sigma)
    elif partId == '3':
        word_indices = processEmail(ec) + 1
        out = formatter('%d ', word_indices)
    elif partId == '4':
        x = emailFeatures(wi)
        out = formatter('%d ', x)
    return out
Ejemplo n.º 3
0
def output(partId):
    # Random Test Cases
    X = np.reshape(3 * np.sin(np.arange(1, 31)), (3, 10), order='F')
    Xm = np.reshape(np.sin(np.arange(1, 33)), (16, 2), order='F') / 5
    ym = 1 + np.arange(1, 17) % 4
    t1 = np.sin(np.reshape(np.arange(1, 25, 2), (4, 3), order='F'))
    t2 = np.cos(np.reshape(np.arange(1, 41, 2), (4, 5), order='F'))
    t = np.concatenate([t1.ravel(), t2.ravel()], axis=0)
    if partId == '1':
        J, _ = nnCostFunction(t, 2, 4, 4, Xm, ym, 0)
        out = formatter('%0.5f ', J)
    elif partId == '2':
        J, _ = nnCostFunction(t, 2, 4, 4, Xm, ym, 1.5)
        out = formatter('%0.5f ', J)
    elif partId == '3':
        out = formatter('%0.5f ', sigmoidGradient(X))
    elif partId == '4':
        J, grad = nnCostFunction(t, 2, 4, 4, Xm, ym, 0)
        out = formatter('%0.5f ', J)
        out += formatter('%0.5f ', grad)
    elif partId == '5':
        J, grad = nnCostFunction(t, 2, 4, 4, Xm, ym, 1.5)
        out = formatter('%0.5f ', J)
        out += formatter('%0.5f ', grad)
    return out
Ejemplo n.º 4
0
def output(partId):
    # Random Test Cases
    X1 = np.column_stack(
        (np.ones(20), np.exp(1) + np.exp(2) * np.linspace(0.1, 2, 20)))
    Y1 = X1[:, 1] + np.sin(X1[:, 0]) + np.cos(X1[:, 1])
    X2 = np.column_stack((X1, X1[:, 1]**0.5, X1[:, 1]**0.25))
    Y2 = np.power(Y1, 0.5) + Y1
    if partId == '1':
        out = formatter('%0.5f ', warmUpExercise())
    elif partId == '2':
        out = formatter('%0.5f ', computeCost(X1, Y1, np.array([0.5, -0.5])))
    elif partId == '3':
        out = formatter(
            '%0.5f ', gradientDescent(X1, Y1, np.array([0.5, -0.5]), 0.01, 10))
    elif partId == '4':
        out = formatter('%0.5f ', featureNormalize(X2[:, 1:4]))
    elif partId == '5':
        out = formatter(
            '%0.5f ', computeCostMulti(X2, Y2, np.array([0.1, 0.2, 0.3, 0.4])))
    elif partId == '6':
        out = formatter(
            '%0.5f ',
            gradientDescentMulti(X2, Y2, np.array([-0.1, -0.2, -0.3, -0.4]),
                                 0.01, 10))
    elif partId == '7':
        out = formatter('%0.5f ', normalEqn(X2, Y2))
    return out
Ejemplo n.º 5
0
def output(partId):
    # Random Test Cases
    X = np.stack([
        np.ones(20),
        np.exp(1) * np.sin(np.arange(1, 21)),
        np.exp(0.5) * np.cos(np.arange(1, 21))
    ],
                 axis=1)
    y = np.reshape((np.sin(X[:, 0] + X[:, 1]) > 0).astype(float), (20, 1))
    if partId == '1':
        out = formatter('%0.5f ', sigmoid(X))
    elif partId == '2':
        out = formatter(
            '%0.5f ',
            costFunction(np.reshape(np.array([0.25, 0.5, -0.5]), (3, 1)), X,
                         y))
    elif partId == '3':
        cost, grad = costFunction(
            np.reshape(np.array([0.25, 0.5, -0.5]), (3, 1)), X, y)
        out = formatter('%0.5f ', grad)
    elif partId == '4':
        out = formatter(
            '%0.5f ',
            predict(np.reshape(np.array([0.25, 0.5, -0.5]), (3, 1)), X))
    elif partId == '5':
        out = formatter(
            '%0.5f ',
            costFunctionReg(np.reshape(np.array([0.25, 0.5, -0.5]), (3, 1)), X,
                            y, 0.1))
    elif partId == '6':
        cost, grad = costFunctionReg(
            np.reshape(np.array([0.25, 0.5, -0.5]), (3, 1)), X, y, 0.1)
        out = formatter('%0.5f ', grad)
    return out
Ejemplo n.º 6
0
def output(partId):
    # Random Test Cases
    X = np.vstack([
        np.ones(10),
        np.sin(np.arange(1, 15, 1.5)),
        np.cos(np.arange(1, 15, 1.5))
    ]).T
    y = np.sin(np.arange(1, 31, 3))
    Xval = np.vstack([
        np.ones(10),
        np.sin(np.arange(0, 14, 1.5)),
        np.cos(np.arange(0, 14, 1.5))
    ]).T
    yval = np.sin(np.arange(1, 11))
    if partId == '1':
        J, _ = linearRegCostFunction(X, y, np.array([0.1, 0.2, 0.3]), 0.5)
        out = formatter('%0.5f ', J)
    elif partId == '2':
        J, grad = linearRegCostFunction(X, y, np.array([0.1, 0.2, 0.3]), 0.5)
        out = formatter('%0.5f ', grad)
    elif partId == '3':
        error_train, error_val = learningCurve(X, y, Xval, yval, 1)
        out = formatter(
            '%0.5f ', np.concatenate([error_train.ravel(),
                                      error_val.ravel()]))
    elif partId == '4':
        X_poly = polyFeatures(X[1, :].T, 8)
        out = formatter('%0.5f ', X_poly)
    elif partId == '5':
        lambda_vec, error_train, error_val = validationCurve(X, y, Xval, yval)
        out = formatter(
            '%0.5f ',
            np.concatenate(
                [lambda_vec.ravel(),
                 error_train.ravel(),
                 error_val.ravel()]))
    return out
Ejemplo n.º 7
0
def output(partId):
    # Random Test Cases
    X = np.sin(np.arange(1, 166)).reshape(15, 11, order='F')
    Z = np.cos(np.arange(1, 122)).reshape(11, 11, order='F')
    C = Z[:5, :]
    idx = np.arange(1, 16) % 3
    if partId == '1':
        idx = findClosestCentroids(X, C) + 1
        out = formatter('%0.5f ', idx.ravel('F'))
    elif partId == '2':
        centroids = computeCentroids(X, idx, 3)
        out = formatter('%0.5f ', centroids.ravel('F'))
    elif partId == '3':
        U, S = pca(X)
        out = formatter(
            '%0.5f ', np.abs(np.hstack([U.ravel('F'),
                                        np.diag(S).ravel('F')])))
    elif partId == '4':
        X_proj = projectData(X, Z, 5)
        out = formatter('%0.5f ', X_proj.ravel('F'))
    elif partId == '5':
        X_rec = recoverData(X[:, :5], Z, 5)
        out = formatter('%0.5f ', X_rec.ravel('F'))
    return out
Ejemplo n.º 8
0
def output(partId):
    # Random Test Cases
    n_u = 3
    n_m = 4
    n = 5
    X = np.sin(np.arange(1, 1 + n_m * n)).reshape(n_m, n, order='F')
    Theta = np.cos(np.arange(1, 1 + n_u * n)).reshape(n_u, n, order='F')
    Y = np.sin(np.arange(1, 1 + 2 * n_m * n_u, 2)).reshape(n_m, n_u, order='F')
    R = Y > 0.5
    pval = np.concatenate([abs(Y.ravel('F')), [0.001], [1]])
    Y = Y * R
    yval = np.concatenate([R.ravel('F'), [1], [0]])
    params = np.concatenate([X.ravel(), Theta.ravel()])
    if partId == '1':
        mu, sigma2 = estimateGaussian(X)
        out = formatter('%0.5f ', mu.ravel())
        out += formatter('%0.5f ', sigma2.ravel())
    elif partId == '2':
        bestEpsilon, bestF1 = selectThreshold(yval, pval)
        out = formatter('%0.5f ', bestEpsilon.ravel())
        out += formatter('%0.5f ', bestF1.ravel())
    elif partId == '3':
        J, _ = cofiCostFunc(params, Y, R, n_u, n_m, n, 0)
        out = formatter('%0.5f ', J.ravel())
    elif partId == '4':
        J, grad = cofiCostFunc(params, Y, R, n_u, n_m, n, 0)
        X_grad = grad[:n_m * n].reshape(n_m, n)
        Theta_grad = grad[n_m * n:].reshape(n_u, n)
        out = formatter(
            '%0.5f ',
            np.concatenate([X_grad.ravel('F'),
                            Theta_grad.ravel('F')]))
    elif partId == '5':
        J, _ = cofiCostFunc(params, Y, R, n_u, n_m, n, 1.5)
        out = formatter('%0.5f ', J.ravel())
    elif partId == '6':
        J, grad = cofiCostFunc(params, Y, R, n_u, n_m, n, 1.5)
        X_grad = grad[:n_m * n].reshape(n_m, n)
        Theta_grad = grad[n_m * n:].reshape(n_u, n)
        out = formatter(
            '%0.5f ',
            np.concatenate([X_grad.ravel('F'),
                            Theta_grad.ravel('F')]))
    return out
Ejemplo n.º 9
0
def ex7():
    ## Machine Learning Online Class
    #  Exercise 7 | Principle Component Analysis and K-Means Clustering
    #
    #  Instructions
    #  ------------
    #
    #  This file contains code that helps you get started on the
    #  exercise. You will need to complete the following functions:
    #
    #     pca.m
    #     projectData.m
    #     recoverData.m
    #     computeCentroids.m
    #     findClosestCentroids.m
    #     kMeansInitCentroids.m
    #
    #  For this exercise, you will not need to change any code in this file,
    #  or any other files other than those mentioned above.
    #

    ## Initialization
    #clear ; close all; clc

    ## ================= Part 1: Find Closest Centroids ====================
    #  To help you implement K-Means, we have divided the learning algorithm 
    #  into two functions -- findClosestCentroids and computeCentroids. In this
    #  part, you shoudl complete the code in the findClosestCentroids function. 
    #
    print('Finding closest centroids.\n')

    # Load an example dataset that we will be using
    mat = scipy.io.loadmat('ex7data2.mat')
    X = mat['X']

    # Select an initial set of centroids
    K = 3 # 3 Centroids
    initial_centroids = np.array([[3, 3], [6, 2], [8, 5]])

    # Find the closest centroids for the examples using the
    # initial_centroids
    idx = findClosestCentroids(X, initial_centroids)

    print('Closest centroids for the first 3 examples: ')
    print(formatter(' %d', idx[:3] + 1))
    print('\n(the closest centroids should be 1, 3, 2 respectively)')

    print('Program paused. Press enter to continue.')
    #pause

    ## ===================== Part 2: Compute Means =========================
    #  After implementing the closest centroids function, you should now
    #  complete the computeCentroids function.
    #
    print('\nComputing centroids means.\n')

    #  Compute means based on the closest centroids found in the previous part.
    centroids = computeCentroids(X, idx, K)

    print('Centroids computed after initial finding of closest centroids: ')
    print(centroids)
    print('\n(the centroids should be')
    print('   [ 2.428301 3.157924 ]')
    print('   [ 5.813503 2.633656 ]')
    print('   [ 7.119387 3.616684 ]\n')

    print('Program paused. Press enter to continue.')
    #pause


    ## =================== Part 3: K-Means Clustering ======================
    #  After you have completed the two functions computeCentroids and
    #  findClosestCentroids, you have all the necessary pieces to run the
    #  kMeans algorithm. In this part, you will run the K-Means algorithm on
    #  the example dataset we have provided. 
    #
    print('\nRunning K-Means clustering on example dataset.\n')

    # Load an example dataset
    mat = scipy.io.loadmat('ex7data2.mat')
    X = mat['X']

    # Settings for running K-Means
    K = 3
    max_iters = 10

    # For consistency, here we set centroids to specific values
    # but in practice you want to generate them automatically, such as by
    # settings them to be random examples (as can be seen in
    # kMeansInitCentroids).
    initial_centroids = np.array([[3, 3], [6, 2], [8, 5]])

    # Run K-Means algorithm. The 'true' at the end tells our function to plot
    # the progress of K-Means
    centroids, idx = runkMeans('1', X, initial_centroids, max_iters, True)
    print('\nK-Means Done.\n')

    print('Program paused. Press enter to continue.')
    #pause

    ## ============= Part 4: K-Means Clustering on Pixels ===============
    #  In this exercise, you will use K-Means to compress an image. To do this,
    #  you will first run K-Means on the colors of the pixels in the image and
    #  then you will map each pixel on to it's closest centroid.
    #  
    #  You should now complete the code in kMeansInitCentroids.m
    #

    print('\nRunning K-Means clustering on pixels from an image.\n')

    #  Load an image of a bird
    A = matplotlib.image.imread('bird_small.png')

    # If imread does not work for you, you can try instead
    #   load ('bird_small.mat')

    A = A / 255 # Divide by 255 so that all values are in the range 0 - 1

    # Size of the image
    #img_size = size(A)

    # Reshape the image into an Nx3 matrix where N = number of pixels.
    # Each row will contain the Red, Green and Blue pixel values
    # This gives us our dataset matrix X that we will use K-Means on.
    X = A.reshape(-1, 3)

    # Run your K-Means algorithm on this data
    # You should try different values of K and max_iters here
    K = 16
    max_iters = 10

    # When using K-Means, it is important the initialize the centroids
    # randomly. 
    # You should complete the code in kMeansInitCentroids.m before proceeding
    initial_centroids = kMeansInitCentroids(X, K)

    # Run K-Means
    centroids, idx = runkMeans('2', X, initial_centroids, max_iters)

    print('Program paused. Press enter to continue.')
    #pause


    ## ================= Part 5: Image Compression ======================
    #  In this part of the exercise, you will use the clusters of K-Means to
    #  compress an image. To do this, we first find the closest clusters for
    #  each example. After that, we 

    print('\nApplying K-Means to compress an image.\n')

    # Find closest cluster members
    idx = findClosestCentroids(X, centroids)

    # Essentially, now we have represented the image X as in terms of the
    # indices in idx. 

    # We can now recover the image from the indices (idx) by mapping each pixel
    # (specified by it's index in idx) to the centroid value
    X_recovered = centroids[idx,:].reshape(A.shape)

    # Reshape the recovered image into proper dimensions
    X_recovered = X_recovered.reshape(A.shape)

    fig, ax = plt.subplots(1, 2, figsize=(8, 4))

    # Display the original image 
    ax[0].imshow(A * 255)
    ax[0].grid(False)
    ax[0].set_title('Original')

    # Display compressed image side by side
    ax[1].imshow(X_recovered * 255)
    ax[1].grid(False)
    ax[1].set_title('Compressed, with %d colors' % K)

    plt.savefig('figure3.png')

    print('Program paused. Press enter to continue.\n')
Ejemplo n.º 10
0
def ex7_pca():
    ## Machine Learning Online Class
    #  Exercise 7 | Principle Component Analysis and K-Means Clustering
    #
    #  Instructions
    #  ------------
    #
    #  This file contains code that helps you get started on the
    #  exercise. You will need to complete the following functions:
    #
    #     pca.m
    #     projectData.m
    #     recoverData.m
    #     computeCentroids.m
    #     findClosestCentroids.m
    #     kMeansInitCentroids.m
    #
    #  For this exercise, you will not need to change any code in this file,
    #  or any other files other than those mentioned above.
    #

    ## Initialization
    #clear ; close all; clc

    ## ================== Part 1: Load Example Dataset  ===================
    #  We start this exercise by using a small dataset that is easily to
    #  visualize
    #
    print('Visualizing example dataset for PCA.\n')

    #  The following command loads the dataset. You should now have the 
    #  variable X in your environment
    mat = scipy.io.loadmat('ex7data1.mat')
    X = mat['X']

    #  Visualize the example dataset
    plt.plot(X[:, 0], X[:, 1], 'wo', ms=10, mec='b', mew=1)
    plt.axis([0.5, 6.5, 2, 8])

    plt.savefig('figure1.png')

    print('Program paused. Press enter to continue.')
    #pause


    ## =============== Part 2: Principal Component Analysis ===============
    #  You should now implement PCA, a dimension reduction technique. You
    #  should complete the code in pca.m
    #
    print('\nRunning PCA on example dataset.\n')

    #  Before running PCA, it is important to first normalize X
    X_norm, mu, sigma = featureNormalize(X)

    #  Run PCA
    U, S = pca(X_norm)

    #  Compute mu, the mean of the each feature

    #  Draw the eigenvectors centered at mean of data. These lines show the
    #  directions of maximum variations in the dataset.
    #hold on
    print(S)
    print(U)
    drawLine(mu, mu + 1.5 * np.dot(S[0], U[:,0].T))
    drawLine(mu, mu + 1.5 * np.dot(S[1], U[:,1].T))
    #hold off
    plt.savefig('figure2.png')

    print('Top eigenvector: ')
    print(' U(:,1) = %f %f ' % (U[0,0], U[1,0]))
    print('\n(you should expect to see -0.707107 -0.707107)')

    print('Program paused. Press enter to continue.')
    #pause


    ## =================== Part 3: Dimension Reduction ===================
    #  You should now implement the projection step to map the data onto the 
    #  first k eigenvectors. The code will then plot the data in this reduced 
    #  dimensional space.  This will show you what the data looks like when 
    #  using only the corresponding eigenvectors to reconstruct it.
    #
    #  You should complete the code in projectData.m
    #
    print('\nDimension reduction on example dataset.\n\n')

    #  Plot the normalized dataset (returned from pca)
    fig = plt.figure()
    plt.plot(X_norm[:, 0], X_norm[:, 1], 'bo')

    #  Project the data onto K = 1 dimension
    K = 1
    Z = projectData(X_norm, U, K)
    print('Projection of the first example: %f' % Z[0])
    print('\n(this value should be about 1.481274)\n')

    X_rec = recoverData(Z, U, K)
    print('Approximation of the first example: %f %f' % (X_rec[0, 0], X_rec[0, 1]))
    print('\n(this value should be about  -1.047419 -1.047419)\n')

    #  Draw lines connecting the projected points to the original points
    plt.plot(X_rec[:, 0], X_rec[:, 1], 'ro')
    for i in range(X_norm.shape[0]):
        drawLine(X_norm[i,:], X_rec[i,:])
    #end
    plt.savefig('figure3.png')

    print('Program paused. Press enter to continue.\n')
    #pause

    ## =============== Part 4: Loading and Visualizing Face Data =============
    #  We start the exercise by first loading and visualizing the dataset.
    #  The following code will load the dataset into your environment
    #
    print('\nLoading face dataset.\n\n')

    #  Load Face dataset
    mat = scipy.io.loadmat('ex7faces.mat')
    X = mat['X']

    #  Display the first 100 faces in the dataset
    displayData(X[:100, :])
    plt.savefig('figure4.png')

    print('Program paused. Press enter to continue.\n')
    #pause

    ## =========== Part 5: PCA on Face Data: Eigenfaces  ===================
    #  Run PCA and visualize the eigenvectors which are in this case eigenfaces
    #  We display the first 36 eigenfaces.
    #
    print('\nRunning PCA on face dataset.\n(this mght take a minute or two ...)\n')

    #  Before running PCA, it is important to first normalize X by subtracting 
    #  the mean value from each feature
    X_norm, mu, sigma = featureNormalize(X)

    #  Run PCA
    U, S = pca(X_norm)

    #  Visualize the top 36 eigenvectors found
    displayData(U[:, :36].T)
    plt.savefig('figure5.png')

    print('Program paused. Press enter to continue.')
    #pause


    ## ============= Part 6: Dimension Reduction for Faces =================
    #  Project images to the eigen space using the top k eigenvectors 
    #  If you are applying a machine learning algorithm 
    print('\nDimension reduction for face dataset.\n')

    K = 100
    Z = projectData(X_norm, U, K)

    print('The projected data Z has a size of: ')
    print(formatter('%d ', Z.shape))

    print('\n\nProgram paused. Press enter to continue.')
    #pause

    ## ==== Part 7: Visualization of Faces after PCA Dimension Reduction ====
    #  Project images to the eigen space using the top K eigen vectors and 
    #  visualize only using those K dimensions
    #  Compare to the original input, which is also displayed

    print('\nVisualizing the projected (reduced dimension) faces.\n')

    K = 100
    X_rec  = recoverData(Z, U, K)

    # Display normalized data
    #subplot(1, 2, 1)
    displayData(X_norm[:100,:])
    plt.gcf().suptitle('Original faces')
    #axis square

    plt.savefig('figure6.a.png')

    # Display reconstructed data from only k eigenfaces
    #subplot(1, 2, 2)
    displayData(X_rec[:100,:])
    plt.gcf().suptitle('Recovered faces')
    #axis square

    plt.savefig('figure6.b.png')

    print('Program paused. Press enter to continue.')
    #pause


    ## === Part 8(a): Optional (ungraded) Exercise: PCA for Visualization ===
    #  One useful application of PCA is to use it to visualize high-dimensional
    #  data. In the last K-Means exercise you ran K-Means on 3-dimensional 
    #  pixel colors of an image. We first visualize this output in 3D, and then
    #  apply PCA to obtain a visualization in 2D.

    #close all; close all; clc

    # Re-load the image from the previous exercise and run K-Means on it
    # For this to work, you need to complete the K-Means assignment first
    A = matplotlib.image.imread('bird_small.png')

    # If imread does not work for you, you can try instead
    #   load ('bird_small.mat')

    A = A / 255
    X = A.reshape(-1, 3)
    K = 16
    max_iters = 10
    initial_centroids = kMeansInitCentroids(X, K)
    centroids, idx = runkMeans('7', X, initial_centroids, max_iters)

    #  Sample 1000 random indexes (since working with all the data is
    #  too expensive. If you have a fast computer, you may increase this.
    sel = np.random.choice(X.shape[0], size=1000)

    #  Setup Color Palette
    #palette = hsv(K)
    #colors = palette(idx(sel), :)

    #  Visualize the data and centroid memberships in 3D
    fig = plt.figure()
    ax = fig.add_subplot(111, projection='3d')
    ax.scatter(X[sel, 0], X[sel, 1], X[sel, 2], cmap='rainbow', c=idx[sel], s=8**2)
    ax.set_title('Pixel dataset plotted in 3D. Color shows centroid memberships')
    plt.savefig('figure8.png')

    print('Program paused. Press enter to continue.')
    #pause

    ## === Part 8(b): Optional (ungraded) Exercise: PCA for Visualization ===
    # Use PCA to project this cloud to 2D for visualization

    # Subtract the mean to use PCA
    X_norm, mu, sigma = featureNormalize(X)

    # PCA and project the data to 2D
    U, S = pca(X_norm)
    Z = projectData(X_norm, U, 2)

    # Plot in 2D
    fig = plt.figure()
    plotDataPoints(Z[sel, :], [idx[sel]], K, 0)
    plt.title('Pixel dataset plotted in 2D, using PCA for dimensionality reduction')
    plt.savefig('figure9.png')
    print('Program paused. Press enter to continue.\n')
Ejemplo n.º 11
0
def ex5():
    ## Machine Learning Online Class
    #  Exercise 5 | Regularized Linear Regression and Bias-Variance
    #
    #  Instructions
    #  ------------
    #
    #  This file contains code that helps you get started on the
    #  exercise. You will need to complete the following functions:
    #
    #     linearRegCostFunction.m
    #     learningCurve.m
    #     validationCurve.m
    #
    #  For this exercise, you will not need to change any code in this file,
    #  or any other files other than those mentioned above.
    #

    ## Initialization
    #clear ; close all; clc

    ## =========== Part 1: Loading and Visualizing Data =============
    #  We start the exercise by first loading and visualizing the dataset.
    #  The following code will load the dataset into your environment and plot
    #  the data.
    #

    # Load Training Data
    print('Loading and Visualizing Data ...')

    # Load from ex5data1:
    # You will have X, y, Xval, yval, Xtest, ytest in your environment
    mat = scipy.io.loadmat('ex5data1.mat')
    X = mat['X']
    y = mat['y'].ravel()
    Xval = mat['Xval']
    yval = mat['yval'].ravel()
    Xtest = mat['Xtest']
    ytest = mat['ytest'].ravel()

    # m = Number of examples
    m = X.shape[0]

    # Plot training data
    plt.plot(X, y, marker='x', linestyle='None', ms=10, lw=1.5)
    plt.xlabel('Change in water level (x)')
    plt.ylabel('Water flowing out of the dam (y)')
    plt.savefig('figure1.png')

    print('Program paused. Press enter to continue.')
    #pause;

    ## =========== Part 2: Regularized Linear Regression Cost =============
    #  You should now implement the cost function for regularized linear
    #  regression.
    #

    theta = np.array([1, 1])
    J, _ = linearRegCostFunction(np.concatenate([np.ones((m, 1)), X], axis=1),
                                 y, theta, 1)

    print(
        'Cost at theta = [1 ; 1]: %f \n(this value should be about 303.993192)'
        % J)

    print('Program paused. Press enter to continue.')
    #pause;

    ## =========== Part 3: Regularized Linear Regression Gradient =============
    #  You should now implement the gradient for regularized linear
    #  regression.
    #

    theta = np.array([1, 1])
    J, grad = linearRegCostFunction(
        np.concatenate([np.ones((m, 1)), X], axis=1), y, theta, 1)

    print(
        'Gradient at theta = [1 ; 1]:  [%f; %f] \n(this value should be about [-15.303016; 598.250744])'
        % (grad[0], grad[1]))

    print('Program paused. Press enter to continue.')
    #pause;

    ## =========== Part 4: Train Linear Regression =============
    #  Once you have implemented the cost and gradient correctly, the
    #  trainLinearReg function will use your cost function to train
    #  regularized linear regression.
    #
    #  Write Up Note: The data is non-linear, so this will not give a great
    #                 fit.
    #

    fig = plt.figure()

    #  Train linear regression with lambda = 0
    lambda_value = 0
    theta = trainLinearReg(np.concatenate([np.ones((m, 1)), X], axis=1), y,
                           lambda_value)

    #  Plot fit over the data
    plt.plot(X, y, marker='x', linestyle='None', ms=10, lw=1.5)
    plt.xlabel('Change in water level (x)')
    plt.ylabel('Water flowing out of the dam (y)')
    plt.plot(X,
             np.dot(np.concatenate([np.ones((m, 1)), X], axis=1), theta),
             '--',
             lw=2)
    plt.savefig('figure2.png')

    print('Program paused. Press enter to continue.')
    #pause;

    ## =========== Part 5: Learning Curve for Linear Regression =============
    #  Next, you should implement the learningCurve function.
    #
    #  Write Up Note: Since the model is underfitting the data, we expect to
    #                 see a graph with "high bias" -- slide 8 in ML-advice.pdf
    #

    fig = plt.figure()

    lambda_value = 0
    error_train, error_val = learningCurve(
        np.concatenate([np.ones((m, 1)), X], axis=1), y,
        np.concatenate([np.ones((yval.size, 1)), Xval], axis=1), yval,
        lambda_value)

    plt.plot(np.arange(1, m + 1), error_train, np.arange(1, m + 1), error_val)
    plt.title('Learning curve for linear regression')
    plt.legend(['Train', 'Cross Validation'])
    plt.xlabel('Number of training examples')
    plt.ylabel('Error')
    plt.axis([0, 13, 0, 150])

    print('# Training Examples\tTrain Error\tCross Validation Error')
    for i in range(m):
        print('  \t%d\t\t%f\t%f' % (i, error_train[i], error_val[i]))
    plt.savefig('figure3.png')

    print('Program paused. Press enter to continue.')
    #pause;

    ## =========== Part 6: Feature Mapping for Polynomial Regression =============
    #  One solution to this is to use polynomial regression. You should now
    #  complete polyFeatures to map each example into its powers
    #

    p = 8

    # Map X onto Polynomial Features and Normalize
    X_poly = polyFeatures(X, p)
    X_poly, mu, sigma = featureNormalize(X_poly)  # Normalize
    X_poly = np.concatenate([np.ones((m, 1)), X_poly], axis=1)  # Add Ones

    # Map X_poly_test and normalize (using mu and sigma)
    X_poly_test = polyFeatures(Xtest, p)
    X_poly_test -= mu
    X_poly_test /= sigma
    X_poly_test = np.concatenate(
        [np.ones((X_poly_test.shape[0], 1)), X_poly_test], axis=1)  # Add Ones

    # Map X_poly_val and normalize (using mu and sigma)
    X_poly_val = polyFeatures(Xval, p)
    X_poly_val -= mu
    X_poly_val /= sigma
    X_poly_val = np.concatenate(
        [np.ones((X_poly_val.shape[0], 1)), X_poly_val], axis=1)  # Add Ones

    print('Normalized Training Example 1:')
    print(formatter('  %f  \n', X_poly[0, :]))

    print('\nProgram paused. Press enter to continue.')
    #pause;

    ## =========== Part 7: Learning Curve for Polynomial Regression =============
    #  Now, you will get to experiment with polynomial regression with multiple
    #  values of lambda. The code below runs polynomial regression with
    #  lambda = 0. You should try running the code with different values of
    #  lambda to see how the fit and learning curve change.
    #

    fig = plt.figure()

    lambda_value = 0
    theta = trainLinearReg(X_poly, y, lambda_value)

    # Plot training data and fit
    plt.plot(X, y, marker='x', ms=10, lw=1.5)
    plotFit(np.min(X), np.max(X), mu, sigma, theta, p)
    plt.xlabel('Change in water level (x)')
    plt.ylabel('Water flowing out of the dam (y)')
    plt.title('Polynomial Regression Fit (lambda = %f)' % lambda_value)

    plt.figure()
    error_train, error_val = learningCurve(X_poly, y, X_poly_val, yval,
                                           lambda_value)
    plt.plot(np.arange(1, 1 + m), error_train, np.arange(1, 1 + m), error_val)

    plt.title('Polynomial Regression Learning Curve (lambda = %f)' %
              lambda_value)
    plt.xlabel('Number of training examples')
    plt.ylabel('Error')
    plt.axis([0, 13, 0, 100])
    plt.legend(['Train', 'Cross Validation'])

    print('Polynomial Regression (lambda = %f)\n' % lambda_value)
    print('# Training Examples\tTrain Error\tCross Validation Error')
    for i in range(m):
        print('  \t%d\t\t%f\t%f' % (i, error_train[i], error_val[i]))
    plt.savefig('figure4.png')

    print('Program paused. Press enter to continue.')
    #pause;

    ## =========== Part 8: Validation for Selecting Lambda =============
    #  You will now implement validationCurve to test various values of
    #  lambda on a validation set. You will then use this to select the
    #  "best" lambda value.
    #

    fig = plt.figure()

    lambda_vec, error_train, error_val = validationCurve(
        X_poly, y, X_poly_val, yval)

    plt.plot(lambda_vec, error_train, lambda_vec, error_val)
    plt.legend(['Train', 'Cross Validation'])
    plt.xlabel('lambda')
    plt.ylabel('Error')

    print('lambda\t\tTrain Error\tValidation Error')
    for i in range(lambda_vec.size):
        print(' %f\t%f\t%f' % (lambda_vec[i], error_train[i], error_val[i]))
    plt.savefig('figure5.png')

    print('Program paused. Press enter to continue.')
Ejemplo n.º 12
0
def ex6_spam():
    ## Machine Learning Online Class
    #  Exercise 6 | Spam Classification with SVMs
    #
    #  Instructions
    #  ------------
    # 
    #  This file contains code that helps you get started on the
    #  exercise. You will need to complete the following functions:
    #
    #     gaussianKernel.m
    #     dataset3Params.m
    #     processEmail.m
    #     emailFeatures.m
    #
    #  For this exercise, you will not need to change any code in this file,
    #  or any other files other than those mentioned above.
    #

    ## Initialization
    #clear ; close all; clc

    ## ==================== Part 1: Email Preprocessing ====================
    #  To use an SVM to classify emails into Spam v.s. Non-Spam, you first need
    #  to convert each email into a vector of features. In this part, you will
    #  implement the preprocessing steps for each email. You should
    #  complete the code in processEmail.m to produce a word indices vector
    #  for a given email.

    print('\nPreprocessing sample email (emailSample1.txt)')

    # Extract Features
    file_contents = readFile('emailSample1.txt')
    word_indices  = processEmail(file_contents)

    # Print Stats
    print('Word Indices: ')
    print(formatter(' %d', np.array(word_indices) + 1))
    print('\n')

    print('Program paused. Press enter to continue.')
    #pause;

    ## ==================== Part 2: Feature Extraction ====================
    #  Now, you will convert each email into a vector of features in R^n. 
    #  You should complete the code in emailFeatures.m to produce a feature
    #  vector for a given email.

    print('\nExtracting features from sample email (emailSample1.txt)')

    # Extract Features
    file_contents = readFile('emailSample1.txt')
    word_indices  = processEmail(file_contents)
    features      = emailFeatures(word_indices)

    # Print Stats
    print('Length of feature vector: %d' % features.size)
    print('Number of non-zero entries: %d' % np.sum(features > 0))

    print('Program paused. Press enter to continue.')
    #pause;

    ## =========== Part 3: Train Linear SVM for Spam Classification ========
    #  In this section, you will train a linear classifier to determine if an
    #  email is Spam or Not-Spam.

    # Load the Spam Email dataset
    # You will have X, y in your environment
    mat = scipy.io.loadmat('spamTrain.mat')
    X = mat['X'].astype(float)
    y = mat['y'][:, 0]

    print('\nTraining Linear SVM (Spam Classification)\n')
    print('(this may take 1 to 2 minutes) ...\n')

    C = 0.1
    model = svmTrain(X, y, C, linearKernel)

    p = svmPredict(model, X)

    print('Training Accuracy: %f' % (np.mean(p == y) * 100))

    ## =================== Part 4: Test Spam Classification ================
    #  After training the classifier, we can evaluate it on a test set. We have
    #  included a test set in spamTest.mat

    # Load the test dataset
    # You will have Xtest, ytest in your environment
    mat = scipy.io.loadmat('spamTest.mat')
    Xtest = mat['Xtest'].astype(float)
    ytest = mat['ytest'][:, 0]

    print('\nEvaluating the trained Linear SVM on a test set ...\n')

    p = svmPredict(model, Xtest)

    print('Test Accuracy: %f\n' % (np.mean(p == ytest) * 100))
    #pause;


    ## ================= Part 5: Top Predictors of Spam ====================
    #  Since the model we are training is a linear SVM, we can inspect the
    #  weights learned by the model to understand better how it is determining
    #  whether an email is spam or not. The following code finds the words with
    #  the highest weights in the classifier. Informally, the classifier
    #  'thinks' that these words are the most likely indicators of spam.
    #

    # Sort the weights and obtin the vocabulary list
    idx = np.argsort(model['w'])
    top_idx = idx[-15:][::-1]
    vocabList = getVocabList()

    print('\nTop predictors of spam: ')
    for word, w in zip(np.array(vocabList)[top_idx], model['w'][top_idx]):
        print(' %-15s (%f)' % (word, w))
    #end

    print('\n')
    print('\nProgram paused. Press enter to continue.')
    #pause;

    ## =================== Part 6: Try Your Own Emails =====================
    #  Now that you've trained the spam classifier, you can use it on your own
    #  emails! In the starter code, we have included spamSample1.txt,
    #  spamSample2.txt, emailSample1.txt and emailSample2.txt as examples. 
    #  The following code reads in one of these emails and then uses your 
    #  learned SVM classifier to determine whether the email is Spam or 
    #  Not Spam

    # Set the file to be read in (change this to spamSample2.txt,
    # emailSample1.txt or emailSample2.txt to see different predictions on
    # different emails types). Try your own emails as well!
    filename = 'spamSample1.txt'

    # Read and predict
    file_contents = readFile(filename)
    word_indices  = processEmail(file_contents)
    x             = emailFeatures(word_indices)
    p = svmPredict(model, x.ravel())

    print('\nProcessed %s\n\nSpam Classification: %d' % (filename, p))
    print('(1 indicates spam, 0 indicates not spam)\n')
Ejemplo n.º 13
0
def ex4():
    ## Machine Learning Online Class - Exercise 4 Neural Network Learning

    #  Instructions
    #  ------------
    #
    #  This file contains code that helps you get started on the
    #  linear exercise. You will need to complete the following functions
    #  in this exericse:
    #
    #     sigmoidGradient.m
    #     randInitializeWeights.m
    #     nnCostFunction.m
    #
    #  For this exercise, you will not need to change any code in this file,
    #  or any other files other than those mentioned above.
    #

    ## Initialization
    #clear ; close all; clc

    ## Setup the parameters you will use for this exercise
    input_layer_size = 400  # 20x20 Input Images of Digits
    hidden_layer_size = 25  # 25 hidden units
    num_labels = 10  # 10 labels, from 1 to 10
    # (note that we have mapped "0" to label 10)

    ## =========== Part 1: Loading and Visualizing Data =============
    #  We start the exercise by first loading and visualizing the dataset.
    #  You will be working with a dataset that contains handwritten digits.
    #

    # Load Training Data
    print('Loading and Visualizing Data ...')

    mat = scipy.io.loadmat('ex4data1.mat')
    X = mat['X']
    y = mat['y'].ravel()
    m = X.shape[0]

    # Randomly select 100 data points to display
    sel = np.random.choice(m, 100, replace=False)

    displayData(X[sel, :])
    plt.savefig('figure1.png')

    print('Program paused. Press enter to continue.')
    #pause;

    ## ================ Part 2: Loading Parameters ================
    # In this part of the exercise, we load some pre-initialized
    # neural network parameters.

    print('\nLoading Saved Neural Network Parameters ...')

    # Load the weights into variables Theta1 and Theta2
    mat = scipy.io.loadmat('ex4weights.mat')
    Theta1 = mat['Theta1']
    Theta2 = mat['Theta2']

    # Unroll parameters
    nn_params = np.concatenate([Theta1.ravel(), Theta2.ravel()])

    ## ================ Part 3: Compute Cost (Feedforward) ================
    #  To the neural network, you should first start by implementing the
    #  feedforward part of the neural network that returns the cost only. You
    #  should complete the code in nnCostFunction.m to return cost. After
    #  implementing the feedforward to compute the cost, you can verify that
    #  your implementation is correct by verifying that you get the same cost
    #  as us for the fixed debugging parameters.
    #
    #  We suggest implementing the feedforward cost *without* regularization
    #  first so that it will be easier for you to debug. Later, in part 4, you
    #  will get to implement the regularized cost.
    #
    print('\nFeedforward Using Neural Network ...')

    # Weight regularization parameter (we set this to 0 here).
    lambda_value = 0

    J = nnCostFunction(nn_params, input_layer_size, hidden_layer_size,
                       num_labels, X, y, lambda_value)[0]

    print(
        'Cost at parameters (loaded from ex4weights): %f \n(this value should be about 0.287629)'
        % J)

    print('\nProgram paused. Press enter to continue.')
    #pause;

    ## =============== Part 4: Implement Regularization ===============
    #  Once your cost function implementation is correct, you should now
    #  continue to implement the regularization with the cost.
    #

    print('\nChecking Cost Function (w/ Regularization) ... ')

    # Weight regularization parameter (we set this to 1 here).
    lambda_value = 1

    J = nnCostFunction(nn_params, input_layer_size, hidden_layer_size,
                       num_labels, X, y, lambda_value)[0]

    print(
        'Cost at parameters (loaded from ex4weights): %f \n(this value should be about 0.383770)'
        % J)

    print('Program paused. Press enter to continue.')
    #pause;

    ## ================ Part 5: Sigmoid Gradient  ================
    #  Before you start implementing the neural network, you will first
    #  implement the gradient for the sigmoid function. You should complete the
    #  code in the sigmoidGradient.m file.
    #

    print('\nEvaluating sigmoid gradient...')

    g = sigmoidGradient(np.array([1, -0.5, 0, 0.5, 1]))
    print('Sigmoid gradient evaluated at [1 -0.5 0 0.5 1]:')
    print(formatter('%f ', g))
    print('\n')

    print('Program paused. Press enter to continue.')
    #pause;

    ## ================ Part 6: Initializing Pameters ================
    #  In this part of the exercise, you will be starting to implment a two
    #  layer neural network that classifies digits. You will start by
    #  implementing a function to initialize the weights of the neural network
    #  (randInitializeWeights.m)

    print('\nInitializing Neural Network Parameters ...')

    initial_Theta1 = randInitializeWeights(input_layer_size, hidden_layer_size)
    initial_Theta2 = randInitializeWeights(hidden_layer_size, num_labels)

    # Unroll parameters
    initial_nn_params = np.concatenate(
        [initial_Theta1.ravel(),
         initial_Theta2.ravel()])

    ## =============== Part 7: Implement Backpropagation ===============
    #  Once your cost matches up with ours, you should proceed to implement the
    #  backpropagation algorithm for the neural network. You should add to the
    #  code you've written in nnCostFunction.m to return the partial
    #  derivatives of the parameters.
    #
    print('\nChecking Backpropagation... ')

    #  Check gradients by running checkNNGradients
    checkNNGradients()

    print('\nProgram paused. Press enter to continue.')
    #pause;

    ## =============== Part 8: Implement Regularization ===============
    #  Once your backpropagation implementation is correct, you should now
    #  continue to implement the regularization with the cost and gradient.
    #

    print('\nChecking Backpropagation (w/ Regularization) ... ')

    #  Check gradients by running checkNNGradients
    lambda_value = 3
    checkNNGradients(lambda_value)

    # Also output the costFunction debugging values
    debug_J = nnCostFunction(nn_params, input_layer_size, hidden_layer_size,
                             num_labels, X, y, lambda_value)[0]

    print(
        '\n\nCost at (fixed) debugging parameters (w/ lambda = 10): %f \n(this value should be about 0.576051)\n\n'
        % debug_J)

    print('Program paused. Press enter to continue.')
    #pause;

    ## =================== Part 8: Training NN ===================
    #  You have now implemented all the code necessary to train a neural
    #  network. To train your neural network, we will now use "fmincg", which
    #  is a function which works similarly to "fminunc". Recall that these
    #  advanced optimizers are able to train our cost functions efficiently as
    #  long as we provide them with the gradient computations.
    #
    print('\nTraining Neural Network... ')

    #  After you have completed the assignment, change the MaxIter to a larger
    #  value to see how more training helps.
    options = {'maxiter': 50}

    #  You should also try different values of lambda
    lambda_value = 1

    # Create "short hand" for the cost function to be minimized
    costFunction = lambda p: nnCostFunction(
        p, input_layer_size, hidden_layer_size, num_labels, X, y, lambda_value)

    # Now, costFunction is a function that takes in only one argument (the
    # neural network parameters)
    res = optimize.minimize(costFunction,
                            initial_nn_params,
                            jac=True,
                            method='TNC',
                            options=options)
    nn_params = res.x

    # Obtain Theta1 and Theta2 back from nn_params
    Theta1 = nn_params[0:hidden_layer_size * (input_layer_size + 1)].reshape(
        hidden_layer_size, input_layer_size + 1)

    Theta2 = nn_params[hidden_layer_size * (input_layer_size + 1):].reshape(
        num_labels, hidden_layer_size + 1)

    print('Program paused. Press enter to continue.')
    #pause;

    ## ================= Part 9: Visualize Weights =================
    #  You can now "visualize" what the neural network is learning by
    #  displaying the hidden units to see what features they are capturing in
    #  the data.

    print('\nVisualizing Neural Network... ')

    displayData(Theta1[:, 1:])
    plt.savefig('figure2.png')

    print('\nProgram paused. Press enter to continue.')
    #pause;

    ## ================= Part 10: Implement Predict =================
    #  After training the neural network, we would like to use it to predict
    #  the labels. You will now implement the "predict" function to use the
    #  neural network to predict the labels of the training set. This lets
    #  you compute the training set accuracy.

    pred = predict(Theta1, Theta2, X)

    print('\nTraining Set Accuracy: %f' % (np.mean(
        (pred == y).astype(int)) * 100))