Ejemplo n.º 1
0
def normalizeElevations(dems):
    avgElevation = {}
    validIndicesDict = {}
    ranges = {}
    for burnName, dem in dems.items():
        validIndices = np.where(np.isfinite(dem))
        validIndicesDict[burnName] = validIndices
        validPixels = dem[validIndices]
        avgElevation[burnName] = np.mean(validPixels)
        ranges[burnName] = validPixels.max() - validPixels.min()

        # vis = dem.copy()
        # vis[validIndices] = 42
        # plt.imshow(dem)
        # plt.figure("valid")
        # plt.imshow(vis)
        # plt.show()
    maxRange = max(ranges.values())
    results = {}
    for burnName, dem in dems.items():
        validIndices = validIndicesDict[burnName]
        # print(validIndices)
        validPixels = dem[validIndices]
        # print('valid pixels size:', validPixels.size)
        normed = util.normalize(validPixels)
        blank = np.zeros_like(dem, dtype=np.float32)
        thisRange = ranges[burnName]
        scaleFactor = thisRange / maxRange
        blank[validIndices] = scaleFactor * normed
        # print('scaleFactor is ', scaleFactor)
        # plt.imshow(blank)
        # plt.show()
        results[burnName] = blank
    return results
Ejemplo n.º 2
0
def normalizeNonElevations(nonDems):
    splitIndices = [0]
    validPixelsList = []
    validIndicesList = []
    names = list(nonDems.keys())
    for name in names:
        layer = nonDems[name]
        validIndices = np.where(np.isfinite(layer))
        validPixels = layer[validIndices]

        validPixelsList += validPixels.tolist()
        splitIndices.append(splitIndices[-1] + len(validPixels))
        validIndicesList.append(validIndices)

    arr = np.array(validPixelsList)
    normed = util.normalize(arr)
    splitIndices = splitIndices[1:]
    splitBackUp = np.split(normed, splitIndices)
    results = {}
    for name, validIndices, normedPixels in zip(names,validIndicesList,splitBackUp):
        src = nonDems[name]
        img = np.zeros_like(src, dtype=np.float32)
        img[validIndices] = normedPixels
        results[name] = img
    return results
Ejemplo n.º 3
0
def normalizeNonElevations(nonDems):
    splitIndices = [0]
    validPixelsList = []
    validIndicesList = []
    names = list(nonDems.keys())
    for name in names:
        layer = nonDems[name]
        validIndices = np.where(np.isfinite(layer))
        validPixels = layer[validIndices]

        # print('valid indices:', validIndices)
        # print('len of valid pixels', validPixels.shape, len(validPixels))

        # vis = np.zeros_like(layer)
        # vis[validIndices] = 42
        # plt.figure('before '+name)
        # plt.imshow(layer)
        # plt.figure('valid '+name)
        # plt.imshow(vis)
        # plt.show()

        validPixelsList += validPixels.tolist()
        splitIndices.append(splitIndices[-1] + len(validPixels))
        validIndicesList.append(validIndices)

    # now layers.shape is (nburns, height, width)
    arr = np.array(validPixelsList)
    # print('array is', arr, arr.min(), arr.max())
    normed = util.normalize(arr)
    # print(normed)
    # print('split indices', splitIndices)
    splitIndices = splitIndices[1:]
    # print('split indices', splitIndices)
    splitBackUp = np.split(normed, splitIndices)
    # print('split back up:', splitBackUp.shape)
    results = {}
    for name, validIndices, normedPixels in zip(names, validIndicesList,
                                                splitBackUp):
        # print(name, validIndices, normedPixels)
        src = nonDems[name]
        img = np.zeros_like(src, dtype=np.float32)
        img[validIndices] = normedPixels
        results[name] = img
        # if normedPixels.size > 0:
        #     print('min and max of ', name, normedPixels.min(), normedPixels.max())
        # plt.figure('normed'+name)
        # plt.imshow(img)
    # plt.show()
    return results
Ejemplo n.º 4
0
def median_images(images):
    print(
        "----------------------  INITIALISATION DES CALCULS POUR RECUPERER LE BACKGROUND 2/4 ------------------------------------------"
    )
    images_normalized = normalize(images)
    img_dest = Image.new("RGB", images[0].size)
    dest = img_dest.load()
    N = len(images)

    images_pixels = []
    for img in images_normalized:
        images_pixels.append(img.load())

    printProgressBar(0,
                     images_normalized[0].size[1],
                     prefix='Progress:',
                     suffix='Complete',
                     length=50)

    for y in range(images_normalized[0].size[1]):
        for x in range(images_normalized[0].size[0]):
            rp = []  #listes pour les valeurs des pixels
            gp = []
            bp = []
            for i in range(N):  #pour travailler sur chaque pixel de chaque img
                pix = images_pixels[i]
                r1, g1, b1 = pix[x, y]
                rp.append(r1)  #valeurs rouge de chaque img
                gp.append(g1)  #valeurs verte de chaque img
                bp.append(b1)  #valeurs bleu de chaque img

            rp.sort()  #trie des listes
            gp.sort()
            bp.sort()
            dest[x, y] = rp[N //
                            2], gp[N //
                                   2], bp[N //
                                          2]  #la valeur med de chaque couleur
        printProgressBar(y + 1,
                         images_normalized[0].size[1],
                         prefix='Progress:',
                         suffix='Complete',
                         length=50)

    print(
        "---------------------- FIN DES CALCULS POUR RECUPERER LE BACKGROUND 2/4 ------------------------------------------"
    )
    print()
    return img_dest
def binary_merge(bkg_img, item,img_result):
    _images = normalize([bkg_img,item[0],item[1],img_result])
    bkg_pixels = _images[0].load()
    img_pixels = _images[1].load()
    mask_img = _images[2].load()
    width = _images[0].size[0]
    height = _images[0].size[1]
    img_result_pixels = _images[3].load()
       
    for x in range(width):
        for y in range(height):
            r1,g1,b1 = bkg_pixels[x,y]
            r2,g2,b2 = img_pixels[x,y]
            
            if mask_img[x,y] == (0,0,0):
                img_result_pixels[x,y] = (r2,g2,b2)
Ejemplo n.º 6
0
def get_mask_old(bkg_img, img, img_result):

    _images = normalize([bkg_img, img, img_result])
    bkg_pixels = _images[0].load()
    img_pixels = _images[1].load()
    img_result_pixels = _images[2].load()
    width = _images[0].size[0]
    height = _images[0].size[1]

    for x in range(width):
        for y in range(height):
            r1, g1, b1 = bkg_pixels[x, y]
            r2, g2, b2 = img_pixels[x, y]
            is_background = abs(r1 - r2) < MASK_TRESHOLD and abs(
                g1 - g2) < MASK_TRESHOLD and abs(b1 - b2) < MASK_TRESHOLD
            if not is_background:
                img_result_pixels[x, y] = (0, 0, 0)
Ejemplo n.º 7
0
def get_mask(bkg_img, img):

    mask_image = create_image((255, 255, 255), bkg_img)
    _images = normalize([bkg_img, img, mask_image])
    bkg_pixels = _images[0].load()
    img_pixels = _images[1].load()
    img_mask_pixels = _images[2].load()
    width = _images[0].size[0]
    height = _images[0].size[1]

    for x in range(width):
        for y in range(height):
            r1, g1, b1 = bkg_pixels[x, y]
            r2, g2, b2 = img_pixels[x, y]
            is_background = abs(r1 - r2) < MASK_TRESHOLD and abs(
                g1 - g2) < MASK_TRESHOLD and abs(b1 - b2) < MASK_TRESHOLD
            if not is_background:
                img_mask_pixels[x, y] = (0, 0, 0)

    return mask_image
Ejemplo n.º 8
0
def calculateWeatherMetrics(dataset):
    '''Return a dictionary mapping from (burnName, date) id's to a dictionary of named weather metrics.'''
    metrics = {}
    for burnName, date in dataset.getUsedBurnNamesAndDates():
        wm = dataset.data.getWeather(burnName, date)
        # print('for the Day', burnName, date)
        # print('weather matrix is', wm)
        precip = totalPrecipitation(wm)
        temp = maximumTemperature1(wm)
        temp2 = maximumTemperature2(wm)
        hum = averageHumidity(wm)
        winds = windMetrics(wm)
        entry = [precip, temp, temp2, hum] + winds
        metrics[(burnName, date)] = entry
    # now normalize all of them
    # ensure we keep order
    ids = list(metrics.keys())
    arr = np.array([metrics[i] for i in ids])
    normed = util.normalize(arr, axis=0)
    metrics = {i: nums for (i, nums) in zip(ids, normed)}
    return metrics
Ejemplo n.º 9
0
def normalizeElevations(dems):
    avgElevation = {}
    validIndicesDict = {}
    ranges = {}
    for locName, dem in dems.items():
        validIndices = np.where(np.isfinite(dem))
        validIndicesDict[locName] = validIndices
        validPixels = dem[validIndices]
        avgElevation[locName] = np.mean(validPixels)
        ranges[locName] = validPixels.max()-validPixels.min()

    maxRange = max(ranges.values())
    results = {}
    for locName, dem in dems.items():
        validIndices = validIndicesDict[locName]
        validPixels = dem[validIndices]
        normed = util.normalize(validPixels)
        blank = np.zeros_like(dem, dtype=np.float32)
        thisRange = ranges[locName]
        scaleFactor = thisRange/maxRange
        blank[validIndices] = scaleFactor * normed
        results[locName] = blank
    return results
Ejemplo n.º 10
0
def createCanvases(dataset):
    result = {}
    for burnName, date in dataset.getUsedBurnNamesAndDates():
        burn = dataset.data.burns[burnName]
        day = dataset.data.getDay(burnName, date)
        h, w = day.startingPerim.shape
        # canvas = np.zeros((h,w,3), dtype=np.uint8)
        normedDEM = util.normalize(burn.layers['dem'])
        canvas = cv2.cvtColor(normedDEM, cv2.COLOR_GRAY2RGB)

        im2, startContour, hierarchy = cv2.findContours(
            day.startingPerim.astype(np.uint8), cv2.RETR_TREE,
            cv2.CHAIN_APPROX_SIMPLE)
        im2, endContour, heirarchy = cv2.findContours(
            day.endingPerim.astype(np.uint8), cv2.RETR_TREE,
            cv2.CHAIN_APPROX_SIMPLE)
        cv2.drawContours(canvas, endContour, -1, (0, 0, 1), 1)
        cv2.drawContours(canvas, startContour, -1, (0, 1, 0), 1)

        result[(burnName, date)] = canvas

        # plt.imshow(canvas)
        # plt.show()
    return result