def val(model, val_loader, criterion, epoch, args, log_writer=False):
    global best_val_acc
    model.eval()
    val_loss = lib.Metric('val_loss')
    val_accuracy = lib.Metric('val_accuracy')

    if epoch == -1:
        epoch = args.epochs - 1

    with tqdm(total=len(val_loader),
              desc='Validate Epoch #{}'.format(epoch + 1)) as t:
        with torch.no_grad():
            for data, target in val_loader:
                if args.cuda:
                    data, target = data.cuda(), target.cuda()
                output = model(data)

                val_loss.update(criterion(output, target))
                val_accuracy.update(accuracy(output, target))
                t.update(1)

    print("\nloss: {}, accuracy: {:.2f}, best acc: {:.2f}\n".format(val_loss.avg.item(), 100. * val_accuracy.avg.item(),
                                                                    100. * max(best_val_acc, val_accuracy.avg)))

    if val_accuracy.avg > best_val_acc and log_writer:
        save_model(model, None, -1, args)

    if log_writer:
        log_writer.add_scalar('val/loss', val_loss.avg, epoch)
        log_writer.add_scalar('val/accuracy', val_accuracy.avg, epoch)
        best_val_acc = max(best_val_acc, val_accuracy.avg)
        log_writer.add_scalar('val/best_acc', best_val_acc, epoch)
Ejemplo n.º 2
0
def train_net(args):
    print("Init...")
    log_writer = tensorboardX.SummaryWriter(args.log_dir)
    # train_loader, _, val_loader, _ = lib.build_dataloader(args)
    model = lib.build_model(args)

    print(model.forward(torch.ones(1, 3, 224, 224)).shape)

    # print('Parameters:', sum([np.prod(p.size()) for p in model.parameters()]))

    model = torch.nn.DataParallel(model)
    optimizer = lib.build_optimizer(args, model)

    epoch = 0
    if args.resume:
        epoch = resume_model(model, optimizer, args)

    args.cuda = not args.no_cuda and torch.cuda.is_available()

    cudnn.benchmark = True

    if args.label_smoothing:
        criterion = cross_entropy_with_label_smoothing
    else:
        # criterion = nn.CrossEntropyLoss()
        criterion = nn.MSELoss()

    if args.cuda:
        model.cuda()

    print("Start training...")
    while epoch < args.epochs:
        train(model, train_loader, optimizer, criterion, epoch, log_writer,
              args)

        if (epoch + 1) % args.test_epochs == 0:
            val(model, val_loader, criterion, epoch, args, log_writer)

        if (epoch + 1) % args.save_epochs == 0:
            save_model(model, optimizer, epoch, args)

        epoch += 1

    save_model(model, optimizer, epoch - 1, args)
Ejemplo n.º 3
0
def main():
    args = get_arguments()
    utils.make_dirs(args.save)
    train_f, val_f = utils.create_stats_files(args.save)
    name_model = args.model + "_" + args.dataset_name + "_" + utils.datestr()
    writer = SummaryWriter(log_dir='../runs/' + name_model, comment=name_model)

    best_prec1 = 100.
    start_epoch = 1

    training_generator, val_generator, full_volume, affine = medical_loaders.generate_datasets(
        args, path='.././datasets')

    model, optimizer = medzoo.create_model(args)

    # we want to train in for labels 0 to 8 (9 classes)
    criterion = DiceLoss(classes=11, skip_index_after=args.classes)

    if args.cuda:
        torch.cuda.manual_seed(seed)
        model = model.cuda()
        print("Model transferred in GPU.....")

    print("START TRAINING...")
    for epoch in range(start_epoch, args.nEpochs + 1):
        train_stats = train.train_dice(args, epoch, model, training_generator,
                                       optimizer, criterion, train_f, writer)

        val_stats = train.test_dice(args, epoch, model, val_generator,
                                    criterion, val_f, writer)

        utils.write_train_val_score(writer, epoch, train_stats, val_stats)

        # TODO - check memory issues
        # if epoch % 5 == 0:
        # utils.visualize_no_overlap(args, full_volume, affine, model, epoch, DIM, writer)

        utils.save_model(model, args, val_stats[0], epoch, best_prec1)

    train_f.close()
    val_f.close()
def main():
    args = get_arguments()
    utils.make_dirs(args.save)
    train_f, val_f = utils.create_stats_files(args.save)

    name_model = args.model + "_" + args.dataset_name + "_" + utils.datestr()
    writer = SummaryWriter(log_dir='../runs/' + name_model, comment=name_model)

    best_pred = 1.01
    samples_train = 200
    samples_val = 200
    training_generator, val_generator, full_volume, affine = medical_loaders.generate_datasets(
        args,
        path='.././datasets',
        samples_train=samples_train,
        samples_val=samples_val)

    model, optimizer = medzoo.create_model(args)
    criterion = medzoo.DiceLoss2D(args.classes)

    if args.cuda:
        torch.cuda.manual_seed(seed)
        model = model.cuda()

    for epoch in range(1, args.nEpochs + 1):
        train_stats = train.train_dice(args, epoch, model, training_generator,
                                       optimizer, criterion, train_f, writer)
        val_stats = train.test_dice(args, epoch, model, val_generator,
                                    criterion, val_f, writer)

        utils.write_train_val_score(writer, epoch, train_stats, val_stats)
        best_pred = utils.save_model(model=model,
                                     args=args,
                                     dice_loss=val_stats[0],
                                     epoch=epoch,
                                     best_pred_loss=best_pred)

    train_f.close()
    val_f.close()
Ejemplo n.º 5
0
lr_scheduler = np.logspace(math.log10(config.SIAMFC.TRAIN.LR),
                           math.log10(config.SIAMFC.TRAIN.LR_END),
                           config.SIAMFC.TRAIN.END_EPOCH)

gpu_num = torch.cuda.device_count()
model = torch.nn.DataParallel(model, device_ids=range(gpu_num)).cuda()
print('Model is using {} GPU(s)'.format(gpu_num))

for epoch in range(config.SIAMFC.TRAIN.START_EPOCH,
                   config.SIAMFC.TRAIN.END_EPOCH):
    train_set = SiamFCDataset(config)
    train_loader = DataLoader(train_set,
                              batch_size=config.SIAMFC.TRAIN.BATCH * gpu_num,
                              num_workers=config.WORKERS,
                              pin_memory=True,
                              sampler=None)

    cur_lr = lr_scheduler[epoch]
    for param_group in optimizer.param_groups:
        param_group['lr'] = cur_lr

    model = siamfc_train(train_loader,
                         model=model,
                         optimizer=optimizer,
                         epoch=epoch + 1,
                         cur_lr=cur_lr,
                         cfg=config)

    if epoch >= 4:
        save_model(model, epoch, optimizer, config.SIAMFC.TRAIN.MODEL, config)
Ejemplo n.º 6
0
    num_workers=8,
    pin_memory=True
)

print('Starting training...')
best = 1e10
for epoch in range(start_epoch + 1, opt.num_epochs + 1):
    log_dict_train, _ = trainer.train(epoch, train_loader)
    logger.write('epoch: {} |'.format(epoch))
    for k, v in log_dict_train.items():
        logger.scalar_summary('train_{}'.format(k), v, epoch)
        logger.write('{} {:8f} | '.format(k, v))
    with torch.no_grad():
        log_dict_val, preds = trainer.val(epoch, val_loader)
    for k, v in log_dict_val.items():
        logger.scalar_summary('val_{}'.format(k), v, epoch)
        logger.write('{} {:8f} | '.format(k, v))
    if log_dict_val['loss'] < best:
        best = log_dict_val['loss']
        save_model(os.path.join(opt.save_dir, 'model_best.pth'),
               epoch, model)
    save_model(os.path.join(opt.save_dir, 'model_last.pth'),
             epoch, model, optimizer)
    logger.write('\n')
    if epoch in opt.lr_step:
        save_model(os.path.join(opt.save_dir, 'model_{}.pth'.format(epoch)),
             epoch, model, optimizer)
        lr = opt.lr * (0.1 ** (opt.lr_step.index(epoch) + 1))
        print('Drop LR to', lr)
        for param_group in optimizer.param_groups:
            param_group['lr'] = lr
# training loop
min_loss = 10000000
for epoch in range(EPOCHs):
    print('{} / {}'.format(epoch, EPOCHs))
    stats.training.reset()
    training.train(model, stats, epoch=epoch)
    stats.training.update()
    stats.testing.reset()
    testing.test(model, stats, epoch=epoch)
    stats.testing.update()
    print(stats.testing.minloss)
    if min_loss > stats.testing.loss():
        print('Saving model. Model improved : currect acc ',
              stats.testing.loss(), ' min loss, ', min_loss)
        print('\n\n\n\n')
        save_model(MODEL_PTH, model)
        min_loss = stats.testing.loss()

    else:
        print('Model didn\'t improve : currect acc ', stats.testing.loss(),
              ' min loss, ', min_loss)
        print('\n\n\n\n')

# Plot the results.
plt.figure(1)
plt.semilogy(stats.training.lossLog, label='Training')
# plt.semilogy(stats.testing.lossLog, label='Testing')
plt.xlabel('Epoch')
plt.ylabel('Loss')
plt.legend()
Ejemplo n.º 8
0
    #     sample = sample.to(device)
    #     target = target.to(device)
    #
    #     output = net.forward(sample)
    #
    #     stats.testing.correctSamples += torch.sum(snn.predict.getClass(output) == label).data.item()
    #     stats.testing.numSamples += len(label)
    #
    #     loss = error.numSpikes(output, target)
    #     stats.testing.lossSum += loss.cpu().data.item()
    #     stats.print(epoch, i)

    # Update stats.
    stats.update()
    if epoch % 100 == 0:
        save_model('autoencoder', net)

save_model('autoencoder', net)

# Plot the results.
plt.figure(1)
plt.semilogy(stats.training.lossLog, label='Training')
# plt.semilogy(stats.testing.lossLog, label='Testing')
plt.xlabel('Epoch')
plt.ylabel('Loss')
plt.legend()

plt.figure(2)
net = net.eval()
x, y, c = trainingSet[0]
x = x.to(device)