Ejemplo n.º 1
0
    # Initialize toe for each basin (density, lat)
    toe1_a = np.ma.masked_all((levN, latN))
    toe1_p = np.ma.masked_all((levN, latN))
    toe1_i = np.ma.masked_all((levN, latN))
    toe2_a = np.ma.masked_all((levN, latN))
    toe2_p = np.ma.masked_all((levN, latN))
    toe2_i = np.ma.masked_all((levN, latN))
    # Initialize output variable
    varToE1 = np.ma.masked_all(
        (basinN, levN, latN))  # (>1std) (basin,density,latitude)
    varToE2 = np.ma.masked_all(
        (basinN, levN, latN))  # (>2std) (basin,density,latitude)

    # Compute ToE as last date when diff 1%CO2 - PiControl is larger than mult * stddev
    toe1_a = np.reshape(findToE(varsignal_a, stdvarpiC_a, 1), (levN, latN))
    toe1_p = np.reshape(findToE(varsignal_p, stdvarpiC_p, 1), (levN, latN))
    toe1_i = np.reshape(findToE(varsignal_i, stdvarpiC_i, 1), (levN, latN))
    toe2_a = np.reshape(findToE(varsignal_a, stdvarpiC_a, multStd),
                        (levN, latN))
    toe2_p = np.reshape(findToE(varsignal_p, stdvarpiC_p, multStd),
                        (levN, latN))
    toe2_i = np.reshape(findToE(varsignal_i, stdvarpiC_i, multStd),
                        (levN, latN))

    # Save in output variable
    varToE1[1, :, :] = toe1_a
    varToE1[2, :, :] = toe1_p
    varToE1[3, :, :] = toe1_i
    varToE2[1, :, :] = toe2_a
    varToE2[2, :, :] = toe2_p
Ejemplo n.º 2
0
            varsignal_i[:, j] = averageDom(
                varCO2[:, 3, :, :] - meanvarpiC[3, :, :], 3, domain['Indian'],
                lat, density)
            if method_noise == 'average_std':
                varnoise_i[j] = averageDom(varstd[3, :, :], 2,
                                           domain['Indian'], lat, density)
            else:
                varnoise_i[j] = np.ma.std(averageDom(varpiC[:, 3, :, :], 3,
                                                     domain['Indian'], lat,
                                                     density),
                                          axis=0)

        # Compute ToE of averaged domain
        if domain['Atlantic'] != None and np.ma.is_masked(
                varnoise_a[j]) == False:
            toe1_a[j] = findToE(varsignal_a[:, j], varnoise_a[j], 1)
            toe2_a[j] = findToE(varsignal_a[:, j], varnoise_a[j], multStd)
            print(toe1_a[j], toe2_a[j])
        if domain['Pacific'] != None and np.ma.is_masked(
                varnoise_p[j]) == False:
            toe1_p[j] = findToE(varsignal_p[:, j], varnoise_p[j], 1)
            toe2_p[j] = findToE(varsignal_p[:, j], varnoise_p[j], multStd)
        if domain['Indian'] != None and np.ma.is_masked(
                varnoise_i[j]) == False:
            toe1_i[j] = findToE(varsignal_i[:, j], varnoise_i[j], 1)
            toe2_i[j] = findToE(varsignal_i[:, j], varnoise_i[j], multStd)

        # Take out runs where the signal is of opposite sign than expected
        if signal_domains[j] == 'fresher':
            if np.ma.mean(varsignal_a[-5:, j],
                          axis=0) > multStd * varnoise_a[j]:
                if use_piC == False:
                    varsignal_a[145:,:,:] = varrcp_a-meanvarhn_a
                    varsignal_p[145:,:,:] = varrcp_p-meanvarhn_p
                    varsignal_i[145:,:,:] = varrcp_i-meanvarhn_i
                else:
                    varsignal_a[145:,:,:] = varrcp_a-meanvarpiC_a
                    varsignal_p[145:,:,:] = varrcp_p-meanvarpiC_p
                    varsignal_i[145:,:,:] = varrcp_i-meanvarpiC_i

                # Reorganise i,j dims in single dimension data (speeds up loops)
                varsignal_a = np.reshape(varsignal_a, (timN, levN*latN))
                varsignal_p = np.reshape(varsignal_p, (timN, levN*latN))
                varsignal_i = np.reshape(varsignal_i, (timN, levN*latN))

                # Compute ToE as last date when diff hist+RCP - histNat is larger than mult * stddev
                toe_a = np.reshape(findToE(varsignal_a, stdvarhn_a, multStd),(levN,latN))
                toe_p = np.reshape(findToE(varsignal_p, stdvarhn_p, multStd),(levN,latN))
                toe_i = np.reshape(findToE(varsignal_i, stdvarhn_i, multStd),(levN,latN))

                # Save in output variable
                varToE[k,1,:,:] = toe_a
                varToE[k,2,:,:] = toe_p
                varToE[k,3,:,:] = toe_i

            # Save in output file
            if use_piC == False:
                fileName = 'cmip5.'+model['name']+'.toe_zonal_rcp_histNat.nc'
                dir = '/home/ysilvy/Density_bining/Yona_analysis/data/toe_zonal/toe_rcp85_histNat/'
                description = 'Time of Emergence hist+rcp8.5 vs. histNat for each member. \n' \
                              'The historical runs are prolonged by the 95 years of RCP8.5. ' \
                              'The ensemble mean historicalNat is used here for all historical runs of the model. \n' \
                varnoise_a[j] = np.ma.std(averageDom(varpiC[:,1,:,:], 3, domain['Atlantic'], lat, density), axis=0)
        if domain['Pacific'] != None:
            varsignal_p[:,j] = averageDom(varCO2[:,2,:,:]-varpiC[:,2,:,:], 3, domain['Pacific'], lat, density)
            if method_noise == 'average_std':
                varnoise_p[j] = averageDom(varstd[2,:,:], 2, domain['Pacific'], lat, density)
            else:
                varnoise_p[j] = np.ma.std(averageDom(varpiC[:,2,:,:], 3, domain['Pacific'], lat, density), axis=0)
        if domain['Indian'] != None:
            varsignal_i[:,j] = averageDom(varCO2[:,3,:,:]-varpiC[:,3,:,:], 3, domain['Indian'], lat, density)
            if method_noise == 'average_std':
                varnoise_i[j] = averageDom(varstd[3,:,:], 2, domain['Indian'], lat, density)
            else:
                varnoise_i[j] = np.ma.std(averageDom(varpiC[:,3,:,:], 3, domain['Indian'], lat, density), axis=0)
        # Compute ToE of averaged domain
        if domain['Atlantic'] != None and np.ma.is_masked(varnoise_a[j]) == False:
            toe_a[j] = findToE(varsignal_a[:,j], varnoise_a[j], multStd)
        if domain['Pacific'] != None and np.ma.is_masked(varnoise_p[j]) == False:
            toe_p[j] = findToE(varsignal_p[:,j], varnoise_p[j], multStd)
        if domain['Indian'] != None and np.ma.is_masked(varnoise_i[j]) == False:
            toe_i[j] = findToE(varsignal_i[:,j], varnoise_i[j], multStd)

    varToE[1,:] = toe_a
    varToE[2,:] = toe_p
    varToE[3,:] = toe_i

    print('')


    # Save in output file
    fileName = 'cmip5.'+model['name']+'.toe_1pctCO2vsPiControl_method2_'+method_noise+'.nc'
    if method_noise == 'average_std':
Ejemplo n.º 5
0
def mmeAveMsk2D(listFiles,
                years,
                inDir,
                outDir,
                outFile,
                timeInt,
                mme,
                timeBowl,
                ToeType,
                debug=True):
    '''
    The mmeAveMsk2D() function averages rhon/lat density bined files with differing masks
    It ouputs
     - the MME
     - a percentage of non-masked bins
     - the sign agreement of period2-period1 differences
     - ToE per run and for MME

    Author:    Eric Guilyardi : [email protected]

    Created on Tue Nov 25 13:56:20 CET 2014

    Inputs:
    -------
    - listFiles(str)         - the list of files to be averaged
    - years(t1,t2)           - years for slice read
    - inDir[](str)           - input directory where files are stored (add histnat as inDir[1] for ToE)
    - outDir(str)            - output directory
    - outFile(str)           - output file
    - timeInt(2xindices)     - indices of init period to compare with (e.g. [1,20])
    - mme(bool)              - multi-model mean (will read in single model ensemble stats)
    - timeBowl               - either time 'mean' or time 'max' bowl used to mask out bowl
    - ToeType(str)           - ToE type ('F': none, 'histnat')
                               -> requires running first mm+mme without ToE to compute Stddev
    - debug <optional>       - boolean value

    Notes:
    -----
    - EG 25 Nov 2014   - Initial function write
    - EG 27 Nov 2014   - Rewrite with loop on variables
    - EG 06 Dec 2014   - Added agreement on difference with init period - save as <var>Agree
    - EG 07 Dec 2014   - Read bowl to remove points above bowl - save as <var>Bowl
    - EG 19 Apr 2016   - ToE computation (just for 2D files)
    - EG 07 Oct 2016   - add 3D file support
    - EG 21 Nov 2016   - move 3D support to new function
    - EG 10 jan 2017   - added timeBowl option

    - TODO :
                 - remove loops
                 - add computation of ToE per model (toe 1 and toe 2) see ticket #50
                 - add isonhtc (see ticket #48)
    '''

    # CDMS initialisation - netCDF compression
    comp = 1  # 0 for no compression
    cdm.setNetcdfShuffleFlag(comp)
    cdm.setNetcdfDeflateFlag(comp)
    cdm.setNetcdfDeflateLevelFlag(comp)
    cdm.setAutoBounds('on')
    # Numpy initialisation
    npy.set_printoptions(precision=2)

    if debug:
        debug = True
    else:
        debug = False
    # File dim and grid inits
    t1 = years[0]
    t2 = years[1]
    if t2 <= 0:
        useLastYears = True
        t2 = -t2
    else:
        useLastYears = False
    t10 = t1
    t20 = t2
    # Bound of period average to remove
    peri1 = timeInt[0]
    peri2 = timeInt[1]
    fi = cdm.open(inDir[0] + '/' + listFiles[0])
    isond0 = fi['isondepth']
    # Create variable handle
    # Get grid objects
    axesList = isond0.getAxisList()
    sigmaGrd = isond0.getLevel()
    latN = isond0.shape[3]
    levN = isond0.shape[2]
    basN = isond0.shape[1]
    varsig = 'ptopsigma'

    # Declare and open files for writing
    if os.path.isfile(outDir + '/' + outFile):
        os.remove(outDir + '/' + outFile)
    outFile_f = cdm.open(outDir + '/' + outFile, 'w')

    # Testing mme with less models
    #listFiles=listFiles[0:4]

    #timN = isond0.shape[0]
    timN = t2 - t1
    runN = len(listFiles)

    print ' Number of members:', len(listFiles)

    valmask = isond0.missing_value[0]
    varList = [
        'isondepth', 'isonpers', 'isonso', 'isonthetao', 'isonthick', 'isonvol'
    ]
    varFill = [0., 0., valmask, valmask, 0., 0.]
    # init arrays (2D rho/lat)
    percent = npy.ma.ones([runN, timN, basN, levN, latN], dtype='float32') * 0.
    #minbowl  = npy.ma.ones([basN,latN], dtype='float32')*1000.
    varbowl = npy.ma.ones([runN, timN, basN, latN], dtype='float32') * 1.
    #varList = ['isondepth']
    #print ' !!! ### Testing one variable ###'
    #varList = ['isonthetao']

    # init time axis
    time = cdm.createAxis(npy.float32(range(timN)))
    time.id = 'time'
    time.units = 'years since 1861'
    time.designateTime()
    # init ensemble axis
    ensembleAxis = cdm.createAxis(npy.float32(range(runN)))
    ensembleAxis.id = 'members'
    ensembleAxis.units = 'N'

    # loop on variables
    for iv, var in enumerate(varList):

        # Array inits (2D rho/lat 3D rho/lat/lon)
        #shapeR = [basN,levN,latN]
        isonvar = npy.ma.ones([runN, timN, basN, levN, latN],
                              dtype='float32') * valmask
        print('isonvar shape: ', isonvar.shape)
        vardiff, varbowl2D = [
            npy.ma.ones([runN, timN, basN, levN, latN], dtype='float32')
            for _ in range(2)
        ]
        varstd, varToE1, varToE2 = [
            npy.ma.ones([runN, basN, levN, latN], dtype='float32') * valmask
            for _ in range(3)
        ]
        varones = npy.ma.ones([runN, timN, basN, levN, latN],
                              dtype='float32') * 1.

        print ' Variable ', iv, var
        # loop over files to fill up array
        for i, file in enumerate(listFiles):
            ft = cdm.open(inDir[0] + '/' + file)
            model = file.split('.')[1]
            timeax = ft.getAxis('time')
            file1d = replace(inDir[0] + '/' + file, '2D', '1D')
            if os.path.isfile(file1d):
                f1d = cdm.open(file1d)
            else:
                print 'ERROR:', file1d, 'missing (if mme, run 1D first)'
                sys.exit(1)
            tmax = timeax.shape[0]
            if i == 0:
                tmax0 = tmax
            #adapt [t1,t2] time bounds to piControl last NN years
            if useLastYears:
                t1 = tmax - t20
                t2 = tmax
            else:
                if tmax != tmax0:
                    print 'wrong time axis: exiting...'
                    return

            # read array
            # loop over time/density for memory management
            for it in range(timN):
                t1r = t1 + it
                t2r = t1r + 1
                isonRead = ft(var, time=slice(t1r, t2r))
                if varFill[iv] != valmask:
                    isonvar[i, it, ...] = isonRead.filled(varFill[iv])
                else:
                    isonvar[i, it, ...] = isonRead
            # compute percentage of non-masked points accros MME
            if iv == 0:
                maskvar = mv.masked_values(isonRead.data, valmask).mask
                percent[i, ...] = npy.float32(npy.equal(maskvar, 0))
            if mme:
                # if mme then just accumulate Bowl, Agree fields
                varst = var + 'Agree'
                vardiff[i, ...] = ft(varst, time=slice(t1, t2))
                varb = var + 'Bowl'
                varbowl2D[i, ...] = ft(varb, time=slice(t1, t2))
            else:
                # Compute difference with average of first initN years
                varinit = cdu.averager(isonvar[i, peri1:peri2, ...], axis=0)
                for t in range(timN):
                    vardiff[i, t, ...] = isonvar[i, t, ...] - varinit
                vardiff[i, ...].mask = isonvar[i, ...].mask
                # Read bowl and truncate 2D field above bowl
                if iv == 0:
                    bowlRead = f1d(varsig, time=slice(t1, t2))
                    varbowl[i, ...] = bowlRead
                # Compute Stddev
                varstd[i, ...] = npy.ma.std(isonvar[i, ...], axis=0)
                # Compute ToE
                if ToeType == 'histnat':
                    # Read mean and Std dev from histnat
                    if i == 0:
                        filehn = glob.glob(inDir[1] + '/cmip5.' + model +
                                           '.*zon2D*')[0]
                        #filehn = replace(outFile,'historical','historicalNat')
                        fthn = cdm.open(filehn)
                        varmeanhn = fthn(var)
                        varst = var + 'Std'
                        varmaxstd = fthn(varst)
                    toemult = 1.
                    signal = npy.reshape(isonvar[i, ...] - varmeanhn,
                                         (timN, basN * levN * latN))
                    noise = npy.reshape(varmaxstd, (basN * levN * latN))
                    varToE1[i,
                            ...] = npy.reshape(findToE(signal, noise, toemult),
                                               (basN, levN, latN))
                    toemult = 2.
                    varToE2[i,
                            ...] = npy.reshape(findToE(signal, noise, toemult),
                                               (basN, levN, latN))
            ft.close()
            f1d.close()
        # <-- end of loop on files

        # Compute percentage of bin presence
        # Only keep points where percent > 50%
        if iv == 0:
            percenta = (cdu.averager(percent, axis=0)) * 100.
            percenta = mv.masked_less(percenta, 50)
            percentw = cdm.createVariable(
                percenta,
                axes=[time, axesList[1], axesList[2], axesList[3]],
                id='isonpercent')
            percentw._FillValue = valmask
            percentw.long_name = 'percentage of MME bin'
            percentw.units = '%'
            outFile_f.write(percentw.astype('float32'))

        # Sign of difference
        if mme:
            vardiffsgSum = cdu.averager(vardiff, axis=0)
            vardiffsgSum = cdm.createVariable(
                vardiffsgSum,
                axes=[time, axesList[1], axesList[2], axesList[3]],
                id='foo')
            vardiffsgSum = maskVal(vardiffsgSum, valmask)
            vardiffsgSum.mask = percentw.mask
        else:
            vardiffsg = npy.copysign(varones, vardiff)
            # average signs
            vardiffsgSum = cdu.averager(vardiffsg, axis=0)
            vardiffsgSum = mv.masked_greater(vardiffsgSum, 10000.)
            vardiffsgSum.mask = percentw.mask
            vardiffsgSum._FillValue = valmask

        # average variable accross members
        isonVarAve = cdu.averager(isonvar, axis=0)
        isonVarAve = cdm.createVariable(
            isonVarAve,
            axes=[time, axesList[1], axesList[2], axesList[3]],
            id='foo')
        # mask
        if varFill[iv] == valmask:
            isonVarAve = maskVal(isonVarAve, valmask)

        isonVarAve.mask = percentw.mask

        # Only keep points with rhon >  bowl-delta_rho
        delta_rho = 0.
        if mme:  # start from average of <var>Agree
            isonVarBowl = cdu.averager(varbowl2D, axis=0)
            isonVarBowl = cdm.createVariable(
                isonVarBowl,
                axes=[time, axesList[1], axesList[2], axesList[3]],
                id='foo')
            isonVarBowl = maskVal(isonVarBowl, valmask)
            isonVarBowl.mask = percentw.mask
            # Compute intermodel stddev
            isonVarStd = statistics.std(varbowl2D, axis=0)
            isonVarStd = cdm.createVariable(
                isonVarStd,
                axes=[time, axesList[1], axesList[2], axesList[3]],
                id='foo')
            isonVarStd = maskVal(isonVarStd, valmask)
            isonVarStd.mask = percentw.mask
            if iv == 0:
                # Read mulitmodel sigma on bowl and average in time
                file1d = replace(outDir + '/' + outFile, '2D', '1D')
                if os.path.isfile(file1d):
                    f1d = cdm.open(file1d)
                else:
                    print 'ERROR:', file1d, 'missing (if mme, run 1D first)'
                    sys.exit(1)
                bowlRead = f1d(varsig, time=slice(t1, t2))
                f1d.close()
                siglimit = cdu.averager(bowlRead, axis=0) - delta_rho
            # TODO: remove loop by building global array with 1/0
            for il in range(latN):
                for ib in range(basN):
                    #if ib == 2:
                    #    print il, siglimit[ib,il]
                    if siglimit[ib, il] < valmask / 1000.:
                        # if mme bowl density defined, mask above bowl
                        index = (npy.argwhere(sigmaGrd[:] >= siglimit[ib, il]))
                        isonVarBowl[:, ib, 0:index[0], il].mask = True
                        isonVarStd[:, ib, 0:index[0], il].mask = True
                        vardiffsgSum[:, ib, 0:index[0], il].mask = True
                    else:
                        # mask all points
                        isonVarBowl[:, ib, :, il].mask = True
                        isonVarStd[:, ib, :, il].mask = True
                        vardiffsgSum[:, ib, :, il].mask = True
        else:
            isonVarBowl = isonVarAve * 1.  # start from variable
            isonVarStd = isonVarAve * 1.  # start from variable
            if iv == 0:
                siglimit = cdu.averager(varbowl,
                                        axis=0)  # average accross members
                # Average bowl in time
                if timeBowl == 'mean':
                    siglimit = cdu.averager(siglimit, axis=0) - delta_rho
                # or take largest sigma over time
                else:
                    siglimit = npy.ma.max(siglimit, axis=0) - delta_rho
            # TODO: remove loop by building global array with 1/0
            for il in range(latN):
                for ib in range(basN):
                    if siglimit[ib, il] < valmask / 1000.:
                        # if bowl density defined, mask above bowl
                        index = (npy.argwhere(sigmaGrd[:] >= siglimit[ib, il])
                                 )[:, 0]  #Add [:,0] for python Yona
                        #import code
                        #code.interact(banner='index', local=dict(locals(), **globals()))
                        isonVarBowl[:, ib, 0:index[0], il].mask = True
                        vardiffsgSum[:, ib, 0:index[0], il].mask = True
                    else:
                        # mask all points
                        vardiffsgSum[:, ib, :, il].mask = True

            isonVarBowl = maskVal(isonVarBowl, valmask)
            # Find max of Std dev of all members
            isonVarStd = npy.ma.max(varstd, axis=0)
            # mask
            if varFill[iv] == valmask:
                isonVarStd = maskVal(isonVarStd, valmask)

        # Write
        isonave = cdm.createVariable(
            isonVarAve,
            axes=[time, axesList[1], axesList[2], axesList[3]],
            id=isonRead.id)
        isonave.long_name = isonRead.long_name
        isonave.units = isonRead.units
        isonavediff = cdm.createVariable(
            vardiffsgSum,
            axes=[time, axesList[1], axesList[2], axesList[3]],
            id=isonRead.id + 'Agree')
        isonavediff.long_name = isonRead.long_name
        isonavediff.units = isonRead.units
        isonavebowl = cdm.createVariable(
            isonVarBowl,
            axes=[time, axesList[1], axesList[2], axesList[3]],
            id=isonRead.id + 'Bowl')
        isonavebowl.long_name = isonRead.long_name
        isonavebowl.units = isonRead.units
        if not mme:
            isonmaxstd = cdm.createVariable(
                isonVarStd,
                axes=[axesList[1], axesList[2], axesList[3]],
                id=isonRead.id + 'Std')
            isonmaxstd.long_name = isonRead.long_name
            isonmaxstd.units = isonRead.units

        outFile_f.write(isonave.astype('float32'))
        outFile_f.write(isonavediff.astype('float32'))
        outFile_f.write(isonavebowl.astype('float32'))
        if not mme:
            outFile_f.write(isonmaxstd.astype('float32'))

        if ToeType == 'histnat':
            isontoe1 = cdm.createVariable(
                varToE1,
                axes=[ensembleAxis, axesList[1], axesList[2], axesList[3]],
                id=isonRead.id + 'ToE1')
            isontoe1.long_name = 'ToE 1 for ' + isonRead.long_name
            isontoe1.units = 'Year'
            isontoe2 = cdm.createVariable(
                varToE2,
                axes=[ensembleAxis, axesList[1], axesList[2], axesList[3]],
                id=isonRead.id + 'ToE2')
            isontoe2.long_name = 'ToE 2 for ' + isonRead.long_name
            isontoe2.units = 'Year'
            outFile_f.write(isontoe1.astype('float32'))
            outFile_f.write(isontoe2.astype('float32'))

        if mme:
            isonvarstd = cdm.createVariable(
                isonVarStd,
                axes=[time, axesList[1], axesList[2], axesList[3]],
                id=isonRead.id + 'ModStd')
            isonvarstd.long_name = isonRead.long_name + ' intermodel std'
            isonvarstd.units = isonRead.units
            outFile_f.write(isonvarstd.astype('float32'))

    # <--- end of loop on variables

    outFile_f.close()
    fi.close()
Ejemplo n.º 6
0
        varpms = np.ma.std(varpiC_p, axis=0)
        varims = np.ma.std(varpiC_i, axis=0)

        # -- reorganise i,j dims in single dimension data (speeds up loops)
        varCO2_a  = np.reshape(varCO2_a, (timN,levN*latN))
        varpiC_a = np.reshape(varpiC_a,(timN,levN*latN))
        varams  = np.reshape(varams, (levN*latN))
        varCO2_p  = np.reshape(varCO2_p, (timN,levN*latN))
        varpiC_p = np.reshape(varpiC_p,(timN,levN*latN))
        varpms  = np.reshape(varpms, (levN*latN))
        varCO2_i  = np.reshape(varCO2_i, (timN,levN*latN))
        varpiC_i = np.reshape(varpiC_i,(timN,levN*latN))
        varims  = np.reshape(varims, (levN*latN))

        # -- Compute ToE as last date when diff 1pctCO2 - piControl is larger than mult * stddev
        toei_a = np.reshape(findToE(varCO2_a-varpiC_a, varams, multStd),(levN,latN))
        toei_p = np.reshape(findToE(varCO2_p-varpiC_p, varpms, multStd),(levN,latN))
        toei_i = np.reshape(findToE(varCO2_i-varpiC_i, varims, multStd),(levN,latN))

        # -- Save
        toe_a[i,:,:] = toei_a
        toe_p[i,:,:] = toei_p
        toe_i[i,:,:] = toei_i

        # -- Select domain to average for each model
        domain = ToEdomain1pctCO2vsPiC(model['name'], domain_name)[0]
        domain_char = ToEdomain1pctCO2vsPiC(model['name'], domain_name)[1]

        # -- Average toe
        if domain['Atlantic'] != None:
            varToEA[i] = np.ma.around(averageDom(toe_a[i,:,:], 2, domain['Atlantic'], lat, density))
Ejemplo n.º 7
0
                        if domain['Indian'] != None:
                            varsignal_i[:,k,j] = averageDom(varhrcp_i-meanvarhn_i, 3, domain['Indian'], lat, density)
                            #varsignal_i[145:,k,j] = averageDom(varhrcp_i[145:,:,:]-meanvarhn_i, 3, domain['Indian'], lat, density)
                    else:
                        if domain['Atlantic'] != None:
                            varsignal_a[:,k,j] = averageDom(varhrcp_a-meanvarpiC_a, 3, domain['Atlantic'], lat, density)
                        if domain['Pacific'] !=None:
                            varsignal_p[:,k,j] = averageDom(varhrcp_p-meanvarpiC_p, 3, domain['Pacific'], lat, density)
                        if domain['Indian'] != None:
                            varsignal_i[:,k,j] = averageDom(varhrcp_i-meanvarpiC_i, 3, domain['Indian'], lat, density)

                    # print('      varsignal shape:', varsignal_a.shape, varsignal_p.shape, varsignal_i.shape)

                    # Compute ToE of averaged domain for run k
                    if domain['Atlantic'] != None and np.ma.is_masked(varnoise_a[j]) == False:
                        toe2_a[k,j] = findToE(varsignal_a[:,k,j], varnoise_a[j], multStd) + iniyear
                        toe1_a[k,j] = findToE(varsignal_a[:,k,j], varnoise_a[j], 1) + iniyear
#                         print(toe1_a[k,j], toe2_a[k,j])
                    if domain['Pacific'] != None and np.ma.is_masked(varnoise_p[j]) == False:
                        toe2_p[k,j] = findToE(varsignal_p[:,k,j], varnoise_p[j], multStd) + iniyear
                        toe1_p[k,j] = findToE(varsignal_p[:,k,j], varnoise_p[j], 1) + iniyear
                    if domain['Indian'] != None and np.ma.is_masked(varnoise_i[j]) == False:
                        toe2_i[k,j] = findToE(varsignal_i[:,k,j], varnoise_i[j], multStd) + iniyear
                        toe1_i[k,j] = findToE(varsignal_i[:,k,j], varnoise_i[j], 1) + iniyear

                    # Take out runs where the signal is of opposite sign than expected
                    if v != 'Z':
                        if signal_domains[j] == 'fresher':
                            if np.ma.mean(varsignal_a[-5:,k,j],axis=0) > 2 * varnoise_a[j]:
                                toe2_a[k,j] = np.ma.masked
                            if np.ma.mean(varsignal_a[-5:,k,j],axis=0) > 1 * varnoise_a[j]:
                    varsignal_a = varhrcp_a-meanvarpiC_a
                    varsignal_p = varhrcp_p-meanvarpiC_p
                    varsignal_i = varhrcp_i-meanvarpiC_i

                # Save signal
                varsignal_end[k,1,:,:] = np.ma.average(varsignal_a[-5:,:,:],axis=0)
                varsignal_end[k,2,:,:] = np.ma.average(varsignal_p[-5:,:,:],axis=0)
                varsignal_end[k,3,:,:] = np.ma.average(varsignal_i[-5:,:,:],axis=0)

                # Reorganise i,j dims in single dimension data (speeds up loops)
                varsignal_a = np.reshape(varsignal_a, (timN, levN*latN))
                varsignal_p = np.reshape(varsignal_p, (timN, levN*latN))
                varsignal_i = np.reshape(varsignal_i, (timN, levN*latN))

                # Compute ToE as last date when diff hist+RCP - histNat is larger than mult * stddev
                toe2_a = np.reshape(findToE(varsignal_a, varnoise_a, multStd),(levN,latN))
                toe2_p = np.reshape(findToE(varsignal_p, varnoise_p, multStd),(levN,latN))
                toe2_i = np.reshape(findToE(varsignal_i, varnoise_i, multStd),(levN,latN))
                toe1_a = np.reshape(findToE(varsignal_a, varnoise_a, 1),(levN,latN))
                toe1_p = np.reshape(findToE(varsignal_p, varnoise_p, 1),(levN,latN))
                toe1_i = np.reshape(findToE(varsignal_i, varnoise_i, 1),(levN,latN))

                # Save in output variable
                varToE1[k,1,:,:] = toe1_a
                varToE1[k,2,:,:] = toe1_p
                varToE1[k,3,:,:] = toe1_i
                varToE2[k,1,:,:] = toe2_a
                varToE2[k,2,:,:] = toe2_p
                varToE2[k,3,:,:] = toe2_i

            # Mask points because when calculating ToE, masked points (e.g. bathy, no data) are set to 240 (=no emergence)
Ejemplo n.º 9
0
if ToE:
    # reorganise i,j dims in single dimension data (speeds up loops)
    tvarha = np.reshape(tvarha, (timN, levN * latN))
    tvarhna = np.reshape(tvarhna, (timN, levN * latN))
    varams = np.reshape(varams, (levN * latN))
    tvarhp = np.reshape(tvarhp, (timN, levN * latN))
    tvarhnp = np.reshape(tvarhnp, (timN, levN * latN))
    varpms = np.reshape(varpms, (levN * latN))
    tvarhi = np.reshape(tvarhi, (timN, levN * latN))
    tvarhni = np.reshape(tvarhni, (timN, levN * latN))
    varims = np.reshape(varims, (levN * latN))

    # Compute ToE as last date when diff hist-histNat is larger than mult * stddev
    varam = np.reshape(
        findToE(tvarha - tvarhna, varams, multStd) + iniyear, (levN, latN))
    varpm = np.reshape(
        findToE(tvarhp - tvarhnp, varpms, multStd) + iniyear, (levN, latN))
    varim = np.reshape(
        findToE(tvarhi - tvarhni, varims, multStd) + iniyear, (levN, latN))

    # shade ToE and contour diff hist-histNat
    tmpa = vara
    vara = varam + 1900
    varam = tmpa
    tmpp = varp
    varp = varpm + 1900
    varpm = tmpp
    tmpi = vari
    vari = varim + 1900
    varim = tmpi
Ejemplo n.º 10
0
                            varsignal_p[145:,k,j] = averageDom(varrcp_p-meanvarhn_p, 3, domain['Pacific'], lat, density)
                        else:
                            varsignal_p[145:,k,j] = averageDom(varrcp_p-meanvarpiC_p, 3, domain['Pacific'], lat, density)
                    if domain['Indian'] != None:
                        varsignal_i[0:145,k,j] = averageDom(varh_i-varhn_i, 3, domain['Indian'], lat, density)
                        if use_piC != True:
                            varsignal_i[145:,k,j] = averageDom(varrcp_i-meanvarhn_i, 3, domain['Indian'], lat, density)
                        else:
                            varsignal_i[145:,k,j] = averageDom(varrcp_i-meanvarpiC_i, 3, domain['Indian'], lat, density)

                    print('      varsignal shape:', varsignal_a.shape, varsignal_p.shape, varsignal_i.shape)

                    # Compute ToE of averaged domain for run k
                    if use_piC != True:
                        if domain['Atlantic'] != None and np.ma.is_masked(varnoise_a[j]) == False:
                            toe_a[k,j] = findToE(varsignal_a[:,k,j], varnoise_a[j], multStd) + iniyear
                        if domain['Pacific'] != None and np.ma.is_masked(varnoise_p[j]) == False:
                            toe_p[k,j] = findToE(varsignal_p[:,k,j], varnoise_p[j], multStd) + iniyear
                        if domain['Indian'] != None and np.ma.is_masked(varnoise_i[j]) == False:
                            toe_i[k,j] = findToE(varsignal_i[:,k,j], varnoise_i[j], multStd) + iniyear
                    else:
                        if domain['Atlantic'] != None and np.ma.is_masked(varnoise_a[j]) == False \
                                and np.ma.is_masked(varnoise2_a[j]) == False:
                            toe_a[k,j] = findToE_2thresholds(varsignal_a[:,k,j], varnoise_a[j], varnoise2_a[j], 145, multStd) + iniyear
                        if domain['Pacific'] != None and np.ma.is_masked(varnoise_p[j]) == False \
                                and np.ma.is_masked(varnoise2_p[j]) == False:
                            toe_p[k,j] = findToE_2thresholds(varsignal_p[:,k,j], varnoise_p[j], varnoise2_p[j], 145, multStd) + iniyear
                        if domain['Indian'] != None and np.ma.is_masked(varnoise_i[j]) == False \
                                and np.ma.is_masked(varnoise2_i[j]) == False:
                            toe_i[k,j] = findToE_2thresholds(varsignal_i[:,k,j], varnoise_i[j], varnoise2_i[j], 145, multStd) + iniyear
        varpms = np.ma.std(varpiC_p, axis=0)
        varims = np.ma.std(varpiC_i, axis=0)

        # -- reorganise i,j dims in single dimension data (speeds up loops)
        varCO2_a = np.reshape(varCO2_a, (timN, levN * latN))
        varpiC_a = np.reshape(varpiC_a, (timN, levN * latN))
        varams = np.reshape(varams, (levN * latN))
        varCO2_p = np.reshape(varCO2_p, (timN, levN * latN))
        varpiC_p = np.reshape(varpiC_p, (timN, levN * latN))
        varpms = np.reshape(varpms, (levN * latN))
        varCO2_i = np.reshape(varCO2_i, (timN, levN * latN))
        varpiC_i = np.reshape(varpiC_i, (timN, levN * latN))
        varims = np.reshape(varims, (levN * latN))

        # -- Compute ToE as last date when diff 1pctCO2 - piControl is larger than mult * stddev
        toei_a = np.reshape(findToE(varCO2_a - varpiC_a, varams, multStd),
                            (levN, latN))
        toei_p = np.reshape(findToE(varCO2_p - varpiC_p, varpms, multStd),
                            (levN, latN))
        toei_i = np.reshape(findToE(varCO2_i - varpiC_i, varims, multStd),
                            (levN, latN))

        # -- Save
        toe_a[i, :, :] = toei_a
        toe_p[i, :, :] = toei_p
        toe_i[i, :, :] = toei_i

        # -- Select domain to average for each model
        domain = ToEdomain1pctCO2vsPiC(model['name'], domain_name)[0]
        domain_char = ToEdomain1pctCO2vsPiC(model['name'], domain_name)[1]
Ejemplo n.º 12
0
def mmeAveMsk2D(listFiles, years, inDir, outDir, outFile, timeInt, mme, timeBowl, ToeType, debug=True):
    '''
    The mmeAveMsk2D() function averages rhon/lat density bined files with differing masks
    It ouputs
     - the MME
     - a percentage of non-masked bins
     - the sign agreement of period2-period1 differences
     - ToE per run and for MME

    Author:    Eric Guilyardi : [email protected]

    Created on Tue Nov 25 13:56:20 CET 2014

    Inputs:
    -------
    - listFiles(str)         - the list of files to be averaged
    - years(t1,t2)           - years for slice read
    - inDir[](str)           - input directory where files are stored (add histnat as inDir[1] for ToE)
    - outDir(str)            - output directory
    - outFile(str)           - output file
    - timeInt(2xindices)     - indices of init period to compare with (e.g. [1,20])
    - mme(bool)              - multi-model mean (will read in single model ensemble stats)
    - timeBowl               - either time 'mean' or time 'max' bowl used to mask out bowl
    - ToeType(str)           - ToE type ('F': none, 'histnat')
                               -> requires running first mm+mme without ToE to compute Stddev
    - debug <optional>       - boolean value

    Notes:
    -----
    - EG 25 Nov 2014   - Initial function write
    - EG 27 Nov 2014   - Rewrite with loop on variables
    - EG 06 Dec 2014   - Added agreement on difference with init period - save as <var>Agree
    - EG 07 Dec 2014   - Read bowl to remove points above bowl - save as <var>Bowl
    - EG 19 Apr 2016   - ToE computation (just for 2D files)
    - EG 07 Oct 2016   - add 3D file support
    - EG 21 Nov 2016   - move 3D support to new function
    - EG 10 jan 2017   - added timeBowl option

    - TODO :
                 - remove loops
                 - add computation of ToE per model (toe 1 and toe 2) see ticket #50
                 - add isonhtc (see ticket #48)
    '''

    # CDMS initialisation - netCDF compression
    comp = 1 # 0 for no compression
    cdm.setNetcdfShuffleFlag(comp)
    cdm.setNetcdfDeflateFlag(comp)
    cdm.setNetcdfDeflateLevelFlag(comp)
    cdm.setAutoBounds('on')
    # Numpy initialisation
    npy.set_printoptions(precision=2)

    if debug:
        debug = True
    else:
        debug = False
    # File dim and grid inits
    t1 = years[0]
    t2 = years[1]
    if t2 <= 0:
        useLastYears = True
        t2 = -t2
    else:
        useLastYears = False
    t10 = t1
    t20 = t2
    # Bound of period average to remove
    peri1 = timeInt[0]
    peri2 = timeInt[1]
    fi      = cdm.open(inDir[0]+'/'+listFiles[0])
    isond0  = fi['isondepth'] ; # Create variable handle
    # Get grid objects
    axesList = isond0.getAxisList()
    sigmaGrd = isond0.getLevel()
    latN = isond0.shape[3]
    levN = isond0.shape[2]
    basN = isond0.shape[1]
    varsig='ptopsigma'

    # Declare and open files for writing
    if os.path.isfile(outDir+'/'+outFile):
        os.remove(outDir+'/'+outFile)
    outFile_f = cdm.open(outDir+'/'+outFile,'w')

    # Testing mme with less models
    #listFiles=listFiles[0:4]

    #timN = isond0.shape[0]
    timN = t2-t1
    runN = len(listFiles)

    print ' Number of members:',len(listFiles)

    valmask = isond0.missing_value[0]
    varList = ['isondepth','isonpers','isonso','isonthetao','isonthick','isonvol']
    varFill = [0.,0.,valmask,valmask,0.,0.]
    # init arrays (2D rho/lat)
    percent  = npy.ma.ones([runN,timN,basN,levN,latN], dtype='float32')*0.
    #minbowl  = npy.ma.ones([basN,latN], dtype='float32')*1000.
    varbowl  = npy.ma.ones([runN,timN,basN,latN], dtype='float32')*1.
    #varList = ['isondepth']
    #print ' !!! ### Testing one variable ###'
    #varList = ['isonthetao']

    # init time axis
    time       = cdm.createAxis(npy.float32(range(timN)))
    time.id    = 'time'
    time.units = 'years since 1861'
    time.designateTime()
    # init ensemble axis
    ensembleAxis       = cdm.createAxis(npy.float32(range(runN)))
    ensembleAxis.id    = 'members'
    ensembleAxis.units = 'N'

    # loop on variables
    for iv,var in enumerate(varList):

        # Array inits (2D rho/lat 3D rho/lat/lon)
            #shapeR = [basN,levN,latN]
        isonvar  = npy.ma.ones([runN,timN,basN,levN,latN], dtype='float32')*valmask
        vardiff,varbowl2D = [npy.ma.ones(npy.ma.shape(isonvar)) for _ in range(2)]
        varstd,varToE1,varToE2 =  [npy.ma.ones([runN,basN,levN,latN], dtype='float32')*valmask for _ in range(3)]
        varones  = npy.ma.ones([runN,timN,basN,levN,latN], dtype='float32')*1.

        print ' Variable ',iv, var
        # loop over files to fill up array
        for i,file in enumerate(listFiles):
            ft      = cdm.open(inDir[0]+'/'+file)
            model = file.split('.')[1]
            timeax  = ft.getAxis('time')
            file1d = replace(inDir[0]+'/'+file,'2D','1D')
            if os.path.isfile(file1d):
                f1d = cdm.open(file1d)
            else:
                print 'ERROR:',file1d,'missing (if mme, run 1D first)'
                sys.exit(1)
            tmax = timeax.shape[0]
            if i == 0:
                tmax0 = tmax
            #adapt [t1,t2] time bounds to piControl last NN years
            if useLastYears:
                t1 = tmax-t20
                t2 = tmax
            else:
                if tmax != tmax0:
                    print 'wrong time axis: exiting...'
                    return

            # read array
            # loop over time/density for memory management
            for it in range(timN):
                t1r = t1 + it
                t2r = t1r + 1
                isonRead = ft(var,time = slice(t1r,t2r))
                if varFill[iv] != valmask:
                    isonvar[i,it,...] = isonRead.filled(varFill[iv])
                else:
                    isonvar[i,it,...] = isonRead
            # compute percentage of non-masked points accros MME
            if iv == 0:
                maskvar = mv.masked_values(isonRead.data,valmask).mask
                percent[i,...] = npy.float32(npy.equal(maskvar,0))
            if mme:
                # if mme then just accumulate Bowl, Agree fields
                varst = var+'Agree'
                vardiff[i,...] = ft(varst,time = slice(t1,t2))
                varb = var+'Bowl'
                varbowl2D[i,...] = ft(varb,time = slice(t1,t2))
            else:
                # Compute difference with average of first initN years
                varinit = cdu.averager(isonvar[i,peri1:peri2,...],axis=0)
                for t in range(timN):
                    vardiff[i,t,...] = isonvar[i,t,...] - varinit
                vardiff[i,...].mask = isonvar[i,...].mask
                # Read bowl and truncate 2D field above bowl
                if iv == 0:
                    bowlRead = f1d(varsig,time = slice(t1,t2))
                    varbowl[i,...] = bowlRead
                # Compute Stddev
                varstd[i,...] = npy.ma.std(isonvar[i,...], axis=0)
                # Compute ToE
                if ToeType == 'histnat':
                    # Read mean and Std dev from histnat
                    if i == 0:
                        filehn  = glob.glob(inDir[1]+'/cmip5.'+model+'.*zon2D*')[0]
                        #filehn = replace(outFile,'historical','historicalNat')
                        fthn = cdm.open(filehn)
                        varmeanhn = fthn(var)
                        varst = var+'Std'
                        varmaxstd = fthn(varst)
                    toemult = 1.
                    signal = npy.reshape(isonvar[i,...]-varmeanhn,(timN,basN*levN*latN))
                    noise = npy.reshape(varmaxstd,(basN*levN*latN))
                    varToE1[i,...] = npy.reshape(findToE(signal, noise, toemult),(basN,levN,latN))
                    toemult = 2.
                    varToE2[i,...] = npy.reshape(findToE(signal, noise, toemult),(basN,levN,latN))
            ft.close()
            f1d.close()
        # <-- end of loop on files

        # Compute percentage of bin presence
        # Only keep points where percent > 50%
        if iv == 0:
            percenta = (cdu.averager(percent,axis=0))*100.
            percenta = mv.masked_less(percenta, 50)
            percentw = cdm.createVariable(percenta, axes = [time,axesList[1],axesList[2],axesList[3]], id = 'isonpercent')
            percentw._FillValue = valmask
            percentw.long_name = 'percentage of MME bin'
            percentw.units     = '%'
            outFile_f.write(percentw.astype('float32'))

        # Sign of difference
        if mme:
            vardiffsgSum = cdu.averager(vardiff, axis=0)
            vardiffsgSum = cdm.createVariable(vardiffsgSum , axes =[time,axesList[1],axesList[2],axesList[3]] , id = 'foo')
            vardiffsgSum = maskVal(vardiffsgSum, valmask)
            vardiffsgSum.mask = percentw.mask
        else:
            vardiffsg = npy.copysign(varones,vardiff)
            # average signs
            vardiffsgSum = cdu.averager(vardiffsg, axis=0)
            vardiffsgSum = mv.masked_greater(vardiffsgSum, 10000.)
            vardiffsgSum.mask = percentw.mask
            vardiffsgSum._FillValue = valmask

        # average variable accross members
        isonVarAve = cdu.averager(isonvar, axis=0)
        isonVarAve = cdm.createVariable(isonVarAve , axes =[time,axesList[1],axesList[2],axesList[3]] , id = 'foo')
        # mask
        if varFill[iv] == valmask:
            isonVarAve = maskVal(isonVarAve, valmask)

        isonVarAve.mask = percentw.mask

        # Only keep points with rhon >  bowl-delta_rho
        delta_rho = 0.
        if mme: # start from average of <var>Agree
            isonVarBowl = cdu.averager(varbowl2D, axis=0)
            isonVarBowl = cdm.createVariable(isonVarBowl , axes =[time,axesList[1],axesList[2],axesList[3]] , id = 'foo')
            isonVarBowl = maskVal(isonVarBowl, valmask)
            isonVarBowl.mask = percentw.mask
            # Compute intermodel stddev
            isonVarStd = statistics.std(varbowl2D, axis=0)
            isonVarStd = cdm.createVariable(isonVarStd , axes =[time,axesList[1],axesList[2],axesList[3]] , id = 'foo')
            isonVarStd = maskVal(isonVarStd, valmask)
            isonVarStd.mask = percentw.mask
            if iv == 0:
                # Read mulitmodel sigma on bowl and average in time
                file1d  =  replace(outDir+'/'+outFile,'2D','1D')
                if os.path.isfile(file1d):
                    f1d = cdm.open(file1d)
                else:
                    print 'ERROR:',file1d,'missing (if mme, run 1D first)'
                    sys.exit(1)
                bowlRead = f1d(varsig,time = slice(t1,t2))
                f1d.close()
                siglimit = cdu.averager(bowlRead, axis=0)  - delta_rho
            # TODO: remove loop by building global array with 1/0
            for il in range(latN):
                for ib in range(basN):
                    #if ib == 2:
                    #    print il, siglimit[ib,il]
                    if siglimit[ib,il] < valmask/1000.:
                         # if mme bowl density defined, mask above bowl
                        index = (npy.argwhere(sigmaGrd[:] >= siglimit[ib,il]))
                        isonVarBowl [:,ib,0:index[0],il].mask = True
                        isonVarStd  [:,ib,0:index[0],il].mask = True
                        vardiffsgSum[:,ib,0:index[0],il].mask = True
                    else:
                        # mask all points
                        isonVarBowl [:,ib,:,il].mask = True
                        isonVarStd  [:,ib,:,il].mask = True
                        vardiffsgSum[:,ib,:,il].mask = True
        else:
            isonVarBowl = isonVarAve*1. # start from variable
            isonVarStd  = isonVarAve*1. # start from variable
            if iv == 0:
                siglimit = cdu.averager(varbowl, axis=0) # average accross members
                # Average bowl in time
                if timeBowl == 'mean':
                    siglimit = cdu.averager(siglimit, axis=0) - delta_rho
                # or take largest sigma over time
                else:
                    siglimit = npy.ma.max(siglimit, axis=0) - delta_rho
            # TODO: remove loop by building global array with 1/0
            for il in range(latN):
                for ib in range(basN):
                    if siglimit[ib,il] < valmask/1000.:
                        # if bowl density defined, mask above bowl
                        index = (npy.argwhere(sigmaGrd[:] >= siglimit[ib,il]))
                        isonVarBowl[:,ib,0:index[0],il].mask = True
                        vardiffsgSum[:,ib,0:index[0],il].mask = True
                    else:
                        # mask all points
                        vardiffsgSum[:,ib,:,il].mask = True

            isonVarBowl = maskVal(isonVarBowl, valmask)
            # Find max of Std dev of all members
            isonVarStd = npy.ma.max(varstd, axis=0)
            # mask
            if varFill[iv] == valmask:
                isonVarStd = maskVal(isonVarStd, valmask)

        # Write
        isonave = cdm.createVariable(isonVarAve, axes = [time,axesList[1],axesList[2],axesList[3]], id = isonRead.id)
        isonave.long_name = isonRead.long_name
        isonave.units     = isonRead.units
        isonavediff = cdm.createVariable(vardiffsgSum, axes = [time,axesList[1],axesList[2],axesList[3]], id = isonRead.id+'Agree')
        isonavediff.long_name = isonRead.long_name
        isonavediff.units     = isonRead.units
        isonavebowl = cdm.createVariable(isonVarBowl, axes = [time,axesList[1],axesList[2],axesList[3]], id = isonRead.id+'Bowl')
        isonavebowl.long_name = isonRead.long_name
        isonavebowl.units     = isonRead.units
        if not mme:
            isonmaxstd = cdm.createVariable(isonVarStd, axes = [axesList[1],axesList[2],axesList[3]], id = isonRead.id+'Std')
            isonmaxstd.long_name = isonRead.long_name
            isonmaxstd.units     = isonRead.units

        outFile_f.write(    isonave.astype('float32'))
        outFile_f.write(isonavediff.astype('float32'))
        outFile_f.write(isonavebowl.astype('float32'))
        if not mme:
            outFile_f.write( isonmaxstd.astype('float32'))

        if ToeType == 'histnat':
            isontoe1 = cdm.createVariable(varToE1, axes = [ensembleAxis,axesList[1],axesList[2],axesList[3]], id = isonRead.id+'ToE1')
            isontoe1.long_name = 'ToE 1 for '+isonRead.long_name
            isontoe1.units     = 'Year'
            isontoe2 = cdm.createVariable(varToE2, axes = [ensembleAxis,axesList[1],axesList[2],axesList[3]], id = isonRead.id+'ToE2')
            isontoe2.long_name = 'ToE 2 for '+isonRead.long_name
            isontoe2.units     = 'Year'
            outFile_f.write(isontoe1.astype('float32'))
            outFile_f.write(isontoe2.astype('float32'))

        if mme:
            isonvarstd = cdm.createVariable(isonVarStd , axes =[time,axesList[1],axesList[2],axesList[3]] , id = isonRead.id+'ModStd')
            isonvarstd.long_name = isonRead.long_name+' intermodel std'
            isonvarstd.units     = isonRead.units
            outFile_f.write(isonvarstd.astype('float32'))

    # <--- end of loop on variables

    outFile_f.close()
    fi.close()
Ejemplo n.º 13
0
varpms = np.ma.std(varpiC_p, axis=0)
varims = np.ma.std(varpiC_i, axis=0)

# -- reorganise i,j dims in single dimension data (speeds up loops)
varCO2_a = np.reshape(varCO2_a, (timN, levN * latN))
varpiC_a = np.reshape(varpiC_a, (timN, levN * latN))
varams = np.reshape(varams, (levN * latN))
varCO2_p = np.reshape(varCO2_p, (timN, levN * latN))
varpiC_p = np.reshape(varpiC_p, (timN, levN * latN))
varpms = np.reshape(varpms, (levN * latN))
varCO2_i = np.reshape(varCO2_i, (timN, levN * latN))
varpiC_i = np.reshape(varpiC_i, (timN, levN * latN))
varims = np.reshape(varims, (levN * latN))

# -- Compute ToE as last date when diff 1pctCO2 - piControl is larger than mult * stddev
toe_a = np.reshape(findToE(varCO2_a - varpiC_a, varams, multStd), (levN, latN))
toe_p = np.reshape(findToE(varCO2_p - varpiC_p, varpms, multStd), (levN, latN))
toe_i = np.reshape(findToE(varCO2_i - varpiC_i, varims, multStd), (levN, latN))

# -- Average bowl position
bowlCO2_a = np.ma.average(bowlCO2_a, axis=0)
bowlCO2_p = np.ma.average(bowlCO2_p, axis=0)
bowlCO2_i = np.ma.average(bowlCO2_i, axis=0)
bowlpiC_a = np.ma.average(bowlpiC_a, axis=0)
bowlpiC_p = np.ma.average(bowlpiC_p, axis=0)
bowlpiC_i = np.ma.average(bowlpiC_i, axis=0)

# -- Mask
var_mask = np.ma.getmask(np.ma.average(f2dCO2.variables[var][:], axis=0))
toe_a = np.ma.array(toe_a, mask=var_mask[1, :, :])
toe_p = np.ma.array(toe_p, mask=var_mask[2, :, :])
Ejemplo n.º 14
0
                if use_piC == False:
                    varsignal_a[145:, :, :] = varrcp_a - meanvarhn_a
                    varsignal_p[145:, :, :] = varrcp_p - meanvarhn_p
                    varsignal_i[145:, :, :] = varrcp_i - meanvarhn_i
                else:
                    varsignal_a[145:, :, :] = varrcp_a - meanvarpiC_a
                    varsignal_p[145:, :, :] = varrcp_p - meanvarpiC_p
                    varsignal_i[145:, :, :] = varrcp_i - meanvarpiC_i

                # Reorganise i,j dims in single dimension data (speeds up loops)
                varsignal_a = np.reshape(varsignal_a, (timN, levN * latN))
                varsignal_p = np.reshape(varsignal_p, (timN, levN * latN))
                varsignal_i = np.reshape(varsignal_i, (timN, levN * latN))

                # Compute ToE as last date when diff hist+RCP - histNat is larger than mult * stddev
                toe_a = np.reshape(findToE(varsignal_a, stdvarhn_a, multStd),
                                   (levN, latN))
                toe_p = np.reshape(findToE(varsignal_p, stdvarhn_p, multStd),
                                   (levN, latN))
                toe_i = np.reshape(findToE(varsignal_i, stdvarhn_i, multStd),
                                   (levN, latN))

                # Save in output variable
                varToE[k, 1, :, :] = toe_a
                varToE[k, 2, :, :] = toe_p
                varToE[k, 3, :, :] = toe_i

            # Save in output file
            if use_piC == False:
                fileName = 'cmip5.' + model[
                    'name'] + '.toe_zonal_rcp_histNat.nc'