Ejemplo n.º 1
0
    def run(self):
        schema = schemas.Sensor(many=True)
        ref = self.database.db.accelerometres.find(
            {'ref': str(self.params.uuid)})
        self.data, errors = schema.dump(ref)

        x = [snap.get('x') for snap in self.data]
        y = [snap.get('y') for snap in self.data]
        z = [snap.get('z') for snap in self.data]

        nbBins = self.params.bins
        x = [{
            'r': snap.real,
            'i': snap.imag
        } for snap in np.fft.fft(x, nbBins)]
        y = [{
            'r': snap.real,
            'i': snap.imag
        } for snap in np.fft.fft(y, nbBins)]
        z = [{
            'r': snap.real,
            'i': snap.imag
        } for snap in np.fft.fft(z, nbBins)]

        temp = {"accelerometres": []}
        for i in range(1, min(len(x), len(y), len(z))):
            value = {"x": x[i], "y": y[i], "z": z[i]}
            temp["accelerometres"].append(value)

        self.output.result = {"accelerometres": temp["accelerometres"]}

        return self.output
Ejemplo n.º 2
0
    def run(self):
        """
        Activity Tracker Algorithm
        Step 1 : Import the data from the database
        Step 2 : Calculate the magnetude of the data
        Step 3 : Calculate the difference of the new magnetude list
        Step 4 : Calculate the % of diff(magnetude) that is higher than a threshold
        :return: self.output
        """

        schema = schemas.Sensor(many=True)
        ref = self.database.db.accelerometres.find(
            {'ref': ObjectId(self.params.uuid)})
        acc, errors = schema.dump(ref)
        self.data = acc

        x = [
            sqrt(snap.get('x')**2 + snap.get('y')**2 + snap.get('z')**2)
            for snap in self.data
        ]
        diff = numpy.diff(x)

        total = 0
        for n in diff:
            if abs(n) > self.params.threshold:
                total = total + 1

        self.output.result = 100 * total / len(diff)
        self.output.threshold = self.params.threshold
        self.output.maximum = max(diff)
        self.output.minimum = min(diff)
        self.output.size = len(diff)
        return self.output
Ejemplo n.º 3
0
    def run(self):
        """
        Algorithm du temps d'activité
        Étape 1 : Importer les données provenant de la base de données
        Étape 2 : Calculer la magnitude des données
        Étape 3 : Calculer la différence de la magnitude des données
        Étape 4 : Calcule le pourcentage de la différence de la magnitude qui dépasse le seuil donné en paramètre
        :return: self.output
        """
        threshold = 100
        schema = schemas.Sensor(many=True)
        ref = self.database.db.accelerometres.find({'ref': self.params.uuid})
        acc, errors = schema.dump(ref)
        self.data = acc

        x = [sqrt(snap.get('x') ** 2 + snap.get('y') ** 2 + snap.get('z') ** 2)
             for snap in self.data]
        diff = numpy.diff(x)

        total = 0
        for n in diff:
            if abs(n) > threshold:
                total = total + 1

        self.output.result = 100*total/len(diff)
        self.output.threshold = threshold
        self.output.maximum = max(diff)
        self.output.minimum = min(diff)
        self.output.size = len(diff)
        self.output.execute_time = self.timer
        return self.output.result
Ejemplo n.º 4
0
    def run(self):
        """
        Algorithme pour  un compteur de pas
        Étape 1 : Importer les données de l'enregistrement provenant de la base de données
        Étape 2 : Calculater la moyenne mobile sur les données
        Étape 3 : Identifier les sommets séparer par un certain intervale et une limite
        :return: Rien par défaut, mais self.ouput et quand même utile à retourner
        """
        schema = schemas.Sensor(many=True)
        ref = self.database.db.accelerometres.find({'ref': str(self.params.uuid)})
        data, errors = schema.dump(ref)

        if len(data)/2 < self.spacing : self.spacing = round(len(data)/2 - 1)

        filtereddata = self.moving_average(data)
        peaks = self.find_peaks(filtereddata,spacing = self.spacing,limit = 8250)

        # If you have imported matplotlib, you can decomment the following section. It block the cpu.
        #t = np.linspace(0, 1, len(filtereddata))
        #plt.plot(t,filtereddata)
        #plt.plot(t[peaks],filtereddata[peaks],'ro')
        #plt.show()

        self.output.result = len(peaks)

        return self.output
Ejemplo n.º 5
0
    def run(self):
        schema = schemas.Sensor(many=True)
        ref = self.database.db.accelerometres.find({'ref': ObjectId(self.params.uuid)})
        self.data, errors = schema.dump(ref)

        x = np.array(self.data)
        y = np.fft(x)
        return y
Ejemplo n.º 6
0
    def run(self):
        """
            Coquille vide d'un algorithme
                Donne un exemple de la façon de charger des données provenant de la base de données
                :return: self.output
        """
        schema = schemas.Sensor(many=True)
        ref = self.database.db.accelerometres.find(
            {'ref': str(self.params.uuid)})
        self.data, errors = schema.dump(ref)

        #self.output Est l'endroit où votre résultats devrais être renvoyer.
        #Vous pouvez ajouter autant de sous-résultat tant que les résultat sont afficher dans le JSON et qu'ils ont un nom différent
        #EX :   self.output.result1 = 1
        #       self.output.result2 = {"test":"Hello World"}
        return self.output
Ejemplo n.º 7
0
    def run(self):
        """
        Algorithme pour  un compteur de pas
        Étape 1 : Importer les données de l'enregistrement provenant de la base de données
        Étape 2 : Calculater la moyenne mobile sur les données
        Étape 3 : Identifier les sommets séparer par un certain intervale et une limite
        :return: Rien par défaut, mais self.ouput et quand même utile à retourner
        """
        schema = schemas.Sensor(many=True)
        ref = self.database.db.accelerometres.find({'ref': str(self.params.uuid)})
        data, errors = schema.dump(ref)

        if len(data)/2 < self.spacing : self.spacing = round(len(data)/2 - 1)

        self.output.result = self.moving_average(data,self.spacing)

        return self.output
Ejemplo n.º 8
0
    def run(self):
        """
            Template Algorithm
                Show an example of how to load the data from the database
                :return: self.output
        """
        schema = schemas.Sensor(many=True)
        ref = self.database.db.accelerometres.find(
            {'ref': str(self.params.uuid)})
        self.data, errors = schema.dump(ref)

        filter = None
        if self.params.type == "passe-bas":
            filter = self.LowPass(float(self.params.cutoff),
                                  float(self.params.transition))
        elif self.params.type == "passe-haut":
            filter = self.HighPass(float(self.params.cutoff),
                                   float(self.params.transition))

        x = [snap.get('x') for snap in self.data]
        y = [snap.get('y') for snap in self.data]
        z = [snap.get('z') for snap in self.data]
        t = [snap.get('t') for snap in self.data]

        x = [snap for snap in filter.apply(x)]
        y = [snap for snap in filter.apply(y)]
        z = [snap for snap in filter.apply(z)]

        temp = {"accelerometres": []}
        for i in range(1, min(len(x), len(y), len(z), len(t))):
            value = {"x": x[i], "y": y[i], "z": z[i], "t": t[i]}
            temp["accelerometres"].append(value)

        self.output.result = {"accelerometres": temp["accelerometres"]}

        #self.output is were you return the result.
        #You can add as much subresult as you want, as long as the result is shown in JSON and that they have different name
        #EX :   self.output.result1 = 1
        #       self.output.result2 = {"test":"Hello World"}
        return self.output