Ejemplo n.º 1
0
    def test_validate_model(self):
        import libcellml
        from libcellml import Validator

        # void validateModel(const ModelPtr &model)
        v = Validator()
        v.validateModel(libcellml.Model())
    #  2.c
    #      Use the importer to create a flattened version of the model.
    flatModel = importer.flattenModel(model)

    #  end 2

    print('----------------------------------------------------------')
    print('   STEP 3: Validate and analyse the flattened model       ')
    print('----------------------------------------------------------')

    #  3.a
    #      Create a Validator instance, pass in the flattened model, and check that
    #      there are no issues raised.
    validator = Validator()
    validator.validateModel(flatModel)
    print_issues(validator)

    #  3.b
    #      Create an Analyser instance, pass in the flattened model, and check that
    #      there are no issues raised.
    analyser = Analyser()
    analyser.analyseModel(flatModel)
    print_issues(analyser)

    #  end 3

    print('----------------------------------------------------------')
    print('   STEP 4: Generate code and output                       ')
    print('----------------------------------------------------------')
Ejemplo n.º 3
0
    # Resolve the imports.
    importer.resolveImports(model, '')

    # Check for issues.
    print('The importer found {} issues.'.format(importer.issueCount()))
    for i in range(0, importer.issueCount()):
        issue = importer.issue(i)
        print(issue.description())

    # Flatten the model.
    model = importer.flattenModel(model)

    # STEP 3
    # Create an Validator instance and pass the model to it for processing.
    validator = Validator()
    validator.validateModel(model)

    # Print any issues to the terminal.
    print('The validator found {} issues.'.format(validator.issueCount()))
    for i in range(0, validator.issueCount()):
        issue = validator.issue(i)
        print(issue.description())

    # STEP 4
    # Fix the validation errors.

    # Add units to the variable 'b' in component 'validationErrors'.
    model.component('validationErrors').variable('b').setUnits('dimensionless')

    # Change the name of the variable 'iShouldBeNamed_c' to be 'c'.
    model.component('validationErrors').variable('iShouldBeNamed_c').setName('c')
Ejemplo n.º 4
0
    model = parser.parseModel(read_file.read())

    #  1.d
    #      Print the parsed model to the terminal for viewing.
    print_model(model, False)

    #  end 1

    print('----------------------------------------------------------')
    print('   STEP 2: Validate the parsed model                      ')
    print('----------------------------------------------------------')

    #  2.a
    #      Create a Validator item and validate the model.
    validator = Validator()
    validator.validateModel(model)

    #  end 2.a

    #      Each Validator issue contains:
    #          - a description of the problem
    #          - the reference heading in the normative specification which affects this issue
    #          - a URL at which the informative specification notes can be found
    #          - an std.any item storing the CellML element most relevant to the issue and
    #          - a level indication.

    #  2.b
    #      Retrieve any issues from the validator and print their descriptions and help URL to the terminal.
    #      If you're already familiar with these you can use the print_issues function instead.
    print('The validator found {} issues.'.format(validator.issueCount()))
    for i in range(0, validator.issueCount()):
    read_file1 = open("../resources/tutorial8_MembraneModel.cellml", "r")

    # 1.b  Create a temporary model for the membrane
    membrane_model = parser.parseModel(read_file1.read())
    membrane_model.setName("membraneModel")

    #  1.b Extract the membrane component from the parsed model and add it
    #      to the combined model.  Note that the membrane component's parent
    #      must be removed before adding it to the model.
    membrane = membrane_model.component("membrane")
    membrane.removeParent()
    model.addComponent(membrane)

    #  1.c Validate the combined model.  We expect to see errors from:
    #      - missing units, as we have only added the component so far
    validator.validateModel(model)
    print_errors_to_terminal(validator)

    #  1.d Import the units from the membraneModel into the combined model
    for u in range(0, membrane_model.unitsCount()):
        model.addUnits(membrane_model.units(u))

    #  1.e No errors expected this time :)
    validator.validateModel(model)
    print_errors_to_terminal(validator)

    print("\n-----------------------------------------------")
    print("      STEP 2: Read the sodium channel")
    print("-----------------------------------------------")

    #  2.a Read the model created in Tutorial 7 representing the sodium channel.
Ejemplo n.º 6
0
    print('The importer found {} issues.'.format(importer.issueCount()))
    for i in range(0,importer.issueCount()):
        print(importer.issue(i).description())
    print()

    # STEP 3
    # The analysis tools - the Validator and Analyser - will read only the submitted
    # model they do not look into any of the imported items, so they can't check them.
    # In order to retain the import structure but be able to use the diagnostic tools, 
    # we can create a flattened copy of the model for testing.  This can be used to
    # identify mistakes in the unflattened model too.  

    # Create a Validator and Analyser and submit the original, unflattened model.
    # We don't expect either of these to report any issues.
    validator = Validator()
    validator.validateModel(original_model)

    print('Investigating the original model:')
    print(' - the validator found {} issues'.format(validator.issueCount()))
    for i in range(0, validator.issueCount()):
        print('    - {}'.format(validator.issue(i).description()))
    
    analyser = Analyser()
    analyser.analyseModel(original_model)
    print(' - the analyser found {} issues'.format(analyser.issueCount()))
    for i in range(0, analyser.issueCount()):
        print('    - {}'.format(analyser.issue(i).description()))
    print()

    # Create a flattened version for diagnostics.
    flat_model = importer.flattenModel(original_model)