Ejemplo n.º 1
0
def mpf_cos_sin_pi(x, prec, rnd=round_fast):
    """Accurate computation of (cos(pi*x), sin(pi*x))
    for x close to an integer"""
    sign, man, exp, bc = x
    if not man:
        return cos_sin(x, prec, rnd)
    # Exactly an integer or half-integer?
    if exp >= -1:
        if exp == -1:
            c = fzero
            s = (fone, fnone)[bool(man & 2) ^ sign]
        elif exp == 0:
            c, s = (fnone, fzero)
        else:
            c, s = (fone, fzero)
        return c, s
    # Close to 0 ?
    size = exp + bc
    if size < -(prec+5):
        return (fone, mpf_mul(x, mpf_pi(wp), prec, rnd))
    if sign:
        man = -man
    # Subtract nearest integer (= modulo pi)
    nint = ((man >> (-exp-1)) + 1) >> 1
    man = man - (nint << (-exp))
    x = from_man_exp(man, exp, prec)
    x = mpf_mul(x, mpf_pi(prec), prec)
    # Shifted an odd multiple of pi ?
    if nint & 1:
        c, s = cos_sin(x, prec, negative_rnd[rnd])
        return mpf_neg(c), mpf_neg(s)
    else:
        return cos_sin(x, prec, rnd)
Ejemplo n.º 2
0
def mpf_cos_sin_pi(x, prec, rnd=round_fast):
    """Accurate computation of (cos(pi*x), sin(pi*x))
    for x close to an integer"""
    sign, man, exp, bc = x
    if not man:
        return cos_sin(x, prec, rnd)
    # Exactly an integer or half-integer?
    if exp >= -1:
        if exp == -1:
            c = fzero
            s = (fone, fnone)[bool(man & 2) ^ sign]
        elif exp == 0:
            c, s = (fnone, fzero)
        else:
            c, s = (fone, fzero)
        return c, s
    # Close to 0 ?
    size = exp + bc
    if size < -(prec + 5):
        return (fone, mpf_mul(x, mpf_pi(wp), prec, rnd))
    if sign:
        man = -man
    # Subtract nearest integer (= modulo pi)
    nint = ((man >> (-exp - 1)) + 1) >> 1
    man = man - (nint << (-exp))
    x = from_man_exp(man, exp, prec)
    x = mpf_mul(x, mpf_pi(prec), prec)
    # Shifted an odd multiple of pi ?
    if nint & 1:
        c, s = cos_sin(x, prec, negative_rnd[rnd])
        return mpf_neg(c), mpf_neg(s)
    else:
        return cos_sin(x, prec, rnd)
Ejemplo n.º 3
0
def mpc_zeta(s, prec, rnd):
    re, im = s
    wp = prec + 20
    n = int(wp/2.54 + 5)
    n += int(0.9*abs(to_int(im)))
    d = borwein_coefficients(n)
    ref = to_fixed(re, wp)
    imf = to_fixed(im, wp)
    tre = MP_ZERO
    tim = MP_ZERO
    one = MP_ONE << wp
    one_2wp = MP_ONE << (2*wp)
    critical_line = re == fhalf
    for k in xrange(n):
        log = log_int_fixed(k+1, wp)
        # A square root is much cheaper than an exp
        if critical_line:
            w = one_2wp // sqrt_fixed((k+1) << wp, wp)
        else:
            w = to_fixed(mpf_exp(from_man_exp(-ref*log, -2*wp), wp), wp)
        if k & 1:
            w *= (d[n] - d[k])
        else:
            w *= (d[k] - d[n])
        wre, wim = cos_sin(from_man_exp(-imf * log_int_fixed(k+1, wp), -2*wp), wp)
        tre += (w * to_fixed(wre, wp)) >> wp
        tim += (w * to_fixed(wim, wp)) >> wp
    tre //= (-d[n])
    tim //= (-d[n])
    tre = from_man_exp(tre, -wp, wp)
    tim = from_man_exp(tim, -wp, wp)
    q = mpc_sub(mpc_one, mpc_pow(mpc_two, mpc_sub(mpc_one, s, wp), wp), wp)
    return mpc_div((tre, tim), q, prec, rnd)
Ejemplo n.º 4
0
def mpc_zeta(s, prec, rnd):
    re, im = s
    wp = prec + 20
    n = int(wp / 2.54 + 5)
    n += int(0.9 * abs(to_int(im)))
    d = borwein_coefficients(n)
    ref = to_fixed(re, wp)
    imf = to_fixed(im, wp)
    tre = MP_ZERO
    tim = MP_ZERO
    one = MP_ONE << wp
    one_2wp = MP_ONE << (2 * wp)
    critical_line = re == fhalf
    for k in xrange(n):
        log = log_int_fixed(k + 1, wp)
        # A square root is much cheaper than an exp
        if critical_line:
            w = one_2wp // sqrt_fixed((k + 1) << wp, wp)
        else:
            w = to_fixed(mpf_exp(from_man_exp(-ref * log, -2 * wp), wp), wp)
        if k & 1:
            w *= (d[n] - d[k])
        else:
            w *= (d[k] - d[n])
        wre, wim = cos_sin(
            from_man_exp(-imf * log_int_fixed(k + 1, wp), -2 * wp), wp)
        tre += (w * to_fixed(wre, wp)) >> wp
        tim += (w * to_fixed(wim, wp)) >> wp
    tre //= (-d[n])
    tim //= (-d[n])
    tre = from_man_exp(tre, -wp, wp)
    tim = from_man_exp(tim, -wp, wp)
    q = mpc_sub(mpc_one, mpc_pow(mpc_two, mpc_sub(mpc_one, s, wp), wp), wp)
    return mpc_div((tre, tim), q, prec, rnd)
Ejemplo n.º 5
0
def mpc_zeta(s, prec, rnd=round_fast, alt=0):
    re, im = s
    if im == fzero:
        return mpf_zeta(re, prec, rnd, alt), fzero
    wp = prec + 20
    # Reflection formula. To be rigorous, we should reflect to the left of
    # re = 1/2 (see comments for mpf_zeta), but this leads to unnecessary
    # slowdown for interesting values of s
    if mpf_lt(re, fzero):
        # XXX: could use the separate refl. formula for Dirichlet eta
        if alt:
            q = mpc_sub(mpc_one, mpc_pow(mpc_two, mpc_sub(mpc_one, s, wp),
                wp), wp)
            return mpc_mul(mpc_zeta(s, wp), q, prec, rnd)
        # XXX: -1 should be done exactly
        y = mpc_sub(mpc_one, s, 10*wp)
        a = mpc_gamma(y, wp)
        b = mpc_zeta(y, wp)
        c = mpc_sin_pi(mpc_shift(s, -1), wp)
        rsign, rman, rexp, rbc = re
        isign, iman, iexp, ibc = im
        mag = max(rexp+rbc, iexp+ibc)
        wp2 = wp + mag
        pi = mpf_pi(wp+wp2)
        pi2 = (mpf_shift(pi, 1), fzero)
        d = mpc_div_mpf(mpc_pow(pi2, s, wp2), pi, wp2)
        return mpc_mul(a,mpc_mul(b,mpc_mul(c,d,wp),wp),prec,rnd)
    n = int(wp/2.54 + 5)
    n += int(0.9*abs(to_int(im)))
    d = borwein_coefficients(n)
    ref = to_fixed(re, wp)
    imf = to_fixed(im, wp)
    tre = MP_ZERO
    tim = MP_ZERO
    one = MP_ONE << wp
    one_2wp = MP_ONE << (2*wp)
    critical_line = re == fhalf
    for k in xrange(n):
        log = log_int_fixed(k+1, wp)
        # A square root is much cheaper than an exp
        if critical_line:
            w = one_2wp // sqrt_fixed((k+1) << wp, wp)
        else:
            w = to_fixed(mpf_exp(from_man_exp(-ref*log, -2*wp), wp), wp)
        if k & 1:
            w *= (d[n] - d[k])
        else:
            w *= (d[k] - d[n])
        wre, wim = cos_sin(from_man_exp(-imf * log_int_fixed(k+1, wp), -2*wp), wp)
        tre += (w * to_fixed(wre, wp)) >> wp
        tim += (w * to_fixed(wim, wp)) >> wp
    tre //= (-d[n])
    tim //= (-d[n])
    tre = from_man_exp(tre, -wp, wp)
    tim = from_man_exp(tim, -wp, wp)
    if alt:
        return mpc_pos((tre, tim), prec, rnd)
    else:
        q = mpc_sub(mpc_one, mpc_pow(mpc_two, mpc_sub(mpc_one, s, wp), wp), wp)
        return mpc_div((tre, tim), q, prec, rnd)
Ejemplo n.º 6
0
def mpc_tan(z, prec, rnd=round_fast):
    """Complex tangent. Computed as tan(a+bi) = sin(2a)/M + sinh(2b)/M*i
    where M = cos(2a) + cosh(2b)."""
    a, b = z
    asign, aman, aexp, abc = a
    bsign, bman, bexp, bbc = b
    if b == fzero: return mpf_tan(a, prec, rnd), fzero
    if a == fzero: return fzero, mpf_tanh(b, prec, rnd)
    wp = prec + 15
    a = mpf_shift(a, 1)
    b = mpf_shift(b, 1)
    c, s = cos_sin(a, wp)
    ch, sh = cosh_sinh(b, wp)
    # TODO: handle cancellation when c ~=  -1 and ch ~= 1
    mag = mpf_add(c, ch, wp)
    re = mpf_div(s, mag, prec, rnd)
    im = mpf_div(sh, mag, prec, rnd)
    return re, im
Ejemplo n.º 7
0
def mpc_tan(z, prec, rnd=round_fast):
    """Complex tangent. Computed as tan(a+bi) = sin(2a)/M + sinh(2b)/M*i
    where M = cos(2a) + cosh(2b)."""
    a, b = z
    asign, aman, aexp, abc = a
    bsign, bman, bexp, bbc = b
    if b == fzero: return mpf_tan(a, prec, rnd), fzero
    if a == fzero: return fzero, mpf_tanh(b, prec, rnd)
    wp = prec + 15
    a = mpf_shift(a, 1)
    b = mpf_shift(b, 1)
    c, s = cos_sin(a, wp)
    ch, sh = cosh_sinh(b, wp)
    # TODO: handle cancellation when c ~=  -1 and ch ~= 1
    mag = mpf_add(c, ch, wp)
    re = mpf_div(s, mag, prec, rnd)
    im = mpf_div(sh, mag, prec, rnd)
    return re, im
Ejemplo n.º 8
0
def _jacobi_theta2(z, q):
    extra1 = 10
    extra2 = 20
    # the loops below break when the fixed precision quantities
    # a and b go to zero;
    # right shifting small negative numbers by wp one obtains -1, not zero,
    # so the condition a**2 + b**2 > MIN is used to break the loops.
    MIN = 2
    if z == zero:
        if isinstance(q, mpf):
            wp = mp.prec + extra1
            x = to_fixed(q._mpf_, wp)
            x2 = (x*x) >> wp
            a = b = x2
            s = x2
            while abs(a) > MIN:
                b = (b*x2) >> wp
                a = (a*b) >> wp
                s += a
            s = (1 << (wp+1)) + (s << 1)
            s = mpf(from_man_exp(s, -wp, mp.prec, 'n'))
        else:
            wp = mp.prec + extra1
            xre, xim = q._mpc_
            xre = to_fixed(xre, wp)
            xim = to_fixed(xim, wp)
            x2re = (xre*xre - xim*xim) >> wp
            x2im = (xre*xim) >> (wp - 1)
            are = bre = x2re
            aim = bim = x2im
            sre = (1<<wp) + are
            sim = aim
            while are**2 + aim**2 > MIN:
                bre, bim = (bre * x2re - bim * x2im) >> wp, \
                           (bre * x2im + bim * x2re) >> wp
                are, aim = (are * bre - aim * bim) >> wp,   \
                           (are * bim + aim * bre) >> wp
                sre += are
                sim += aim
            sre = (sre << 1)
            sim = (sim << 1)
            sre = from_man_exp(sre, -wp, mp.prec, 'n')
            sim = from_man_exp(sim, -wp, mp.prec, 'n')
            s = mpc(sre, sim)
    else:
        if isinstance(q, mpf) and isinstance(z, mpf):
            wp = mp.prec + extra1
            x = to_fixed(q._mpf_, wp)
            x2 = (x*x) >> wp
            a = b = x2
            c1, s1 = cos_sin(z._mpf_, wp)
            cn = c1 = to_fixed(c1, wp)
            sn = s1 = to_fixed(s1, wp)
            c2 = (c1*c1 - s1*s1) >> wp
            s2 = (c1 * s1) >> (wp - 1)
            cn, sn = (cn*c2 - sn*s2) >> wp, (sn*c2 + cn*s2) >> wp
            s = c1 + ((a * cn) >> wp)
            while abs(a) > MIN:
                b = (b*x2) >> wp
                a = (a*b) >> wp
                cn, sn = (cn*c2 - sn*s2) >> wp, (sn*c2 + cn*s2) >> wp
                s += (a * cn) >> wp
            s = (s << 1)
            s = mpf(from_man_exp(s, -wp, mp.prec, 'n'))
            s *= nthroot(q, 4)
            return s
        # case z real, q complex
        elif isinstance(z, mpf):
            wp = mp.prec + extra2
            xre, xim = q._mpc_
            xre = to_fixed(xre, wp)
            xim = to_fixed(xim, wp)
            x2re = (xre*xre - xim*xim) >> wp
            x2im = (xre*xim) >> (wp - 1)
            are = bre = x2re
            aim = bim = x2im
            c1, s1 = cos_sin(z._mpf_, wp)
            cn = c1 = to_fixed(c1, wp)
            sn = s1 = to_fixed(s1, wp)
            c2 = (c1*c1 - s1*s1) >> wp
            s2 = (c1 * s1) >> (wp - 1)
            cn, sn = (cn*c2 - sn*s2) >> wp, (sn*c2 + cn*s2) >> wp
            sre = c1 + ((are * cn) >> wp)
            sim = ((aim * cn) >> wp)
            while are**2 + aim**2 > MIN:
                bre, bim = (bre * x2re - bim * x2im) >> wp, \
                           (bre * x2im + bim * x2re) >> wp
                are, aim = (are * bre - aim * bim) >> wp,   \
                           (are * bim + aim * bre) >> wp
                cn, sn = (cn*c2 - sn*s2) >> wp, (sn*c2 + cn*s2) >> wp

                sre += ((are * cn) >> wp)
                sim += ((aim * cn) >> wp)
            sre = (sre << 1)
            sim = (sim << 1)
            sre = from_man_exp(sre, -wp, mp.prec, 'n')
            sim = from_man_exp(sim, -wp, mp.prec, 'n')
            s = mpc(sre, sim)
        #case z complex, q real
        elif isinstance(q, mpf):
            wp = mp.prec + extra2
            x = to_fixed(q._mpf_, wp)
            x2 = (x*x) >> wp
            a = b = x2
            prec0 = mp.prec
            mp.prec = wp
            c1 = cos(z)
            s1 = sin(z)
            mp.prec = prec0
            cnre = c1re = to_fixed(c1.real._mpf_, wp)
            cnim = c1im = to_fixed(c1.imag._mpf_, wp)
            snre = s1re = to_fixed(s1.real._mpf_, wp)
            snim = s1im = to_fixed(s1.imag._mpf_, wp)
            #c2 = (c1*c1 - s1*s1) >> wp
            c2re = (c1re*c1re - c1im*c1im - s1re*s1re + s1im*s1im) >> wp
            c2im = (c1re*c1im - s1re*s1im) >> (wp - 1)
            #s2 = (c1 * s1) >> (wp - 1)
            s2re = (c1re*s1re - c1im*s1im) >> (wp - 1)
            s2im = (c1re*s1im + c1im*s1re) >> (wp - 1)
            #cn, sn = (cn*c2 - sn*s2) >> wp, (sn*c2 + cn*s2) >> wp
            t1 = (cnre*c2re - cnim*c2im - snre*s2re + snim*s2im) >> wp
            t2 = (cnre*c2im + cnim*c2re - snre*s2im - snim*s2re) >> wp
            t3 = (snre*c2re - snim*c2im + cnre*s2re - cnim*s2im) >> wp
            t4 = (snre*c2im + snim*c2re + cnre*s2im + cnim*s2re) >> wp
            cnre = t1
            cnim = t2
            snre = t3
            snim = t4

            sre = c1re + ((a * cnre) >> wp)
            sim = c1im + ((a * cnim) >> wp)
            while abs(a) > MIN:
                b = (b*x2) >> wp
                a = (a*b) >> wp
                t1 = (cnre*c2re - cnim*c2im - snre*s2re + snim*s2im) >> wp
                t2 = (cnre*c2im + cnim*c2re - snre*s2im - snim*s2re) >> wp
                t3 = (snre*c2re - snim*c2im + cnre*s2re - cnim*s2im) >> wp
                t4 = (snre*c2im + snim*c2re + cnre*s2im + cnim*s2re) >> wp
                cnre = t1
                cnim = t2
                snre = t3
                snim = t4
                sre += ((a * cnre) >> wp)
                sim += ((a * cnim) >> wp)
            sre = (sre << 1)
            sim = (sim << 1)
            sre = from_man_exp(sre, -wp, mp.prec, 'n')
            sim = from_man_exp(sim, -wp, mp.prec, 'n')
            s = mpc(sre, sim)
        # case z and q complex
        else:
            wp = mp.prec + extra2
            xre, xim = q._mpc_
            xre = to_fixed(xre, wp)
            xim = to_fixed(xim, wp)
            x2re = (xre*xre - xim*xim) >> wp
            x2im = (xre*xim) >> (wp - 1)
            are = bre = x2re
            aim = bim = x2im
            prec0 = mp.prec
            mp.prec = wp
            # cos(z), siz(z) with z complex
            c1 = cos(z)
            s1 = sin(z)
            mp.prec = prec0
            cnre = c1re = to_fixed(c1.real._mpf_, wp)
            cnim = c1im = to_fixed(c1.imag._mpf_, wp)
            snre = s1re = to_fixed(s1.real._mpf_, wp)
            snim = s1im = to_fixed(s1.imag._mpf_, wp)
            c2re = (c1re*c1re - c1im*c1im - s1re*s1re + s1im*s1im) >> wp
            c2im = (c1re*c1im - s1re*s1im) >> (wp - 1)
            s2re = (c1re*s1re - c1im*s1im) >> (wp - 1)
            s2im = (c1re*s1im + c1im*s1re) >> (wp - 1)
            t1 = (cnre*c2re - cnim*c2im - snre*s2re + snim*s2im) >> wp
            t2 = (cnre*c2im + cnim*c2re - snre*s2im - snim*s2re) >> wp
            t3 = (snre*c2re - snim*c2im + cnre*s2re - cnim*s2im) >> wp
            t4 = (snre*c2im + snim*c2re + cnre*s2im + cnim*s2re) >> wp
            cnre = t1
            cnim = t2
            snre = t3
            snim = t4
            n = 1
            termre = c1re
            termim = c1im
            sre = c1re + ((are * cnre - aim * cnim) >> wp)
            sim = c1im + ((are * cnim + aim * cnre) >> wp)

            n = 3
            termre = ((are * cnre - aim * cnim) >> wp)
            termim = ((are * cnim + aim * cnre) >> wp)
            sre = c1re + ((are * cnre - aim * cnim) >> wp)
            sim = c1im + ((are * cnim + aim * cnre) >> wp)

            n = 5
            while are**2 + aim**2 > MIN:
                bre, bim = (bre * x2re - bim * x2im) >> wp, \
                           (bre * x2im + bim * x2re) >> wp
                are, aim = (are * bre - aim * bim) >> wp,   \
                           (are * bim + aim * bre) >> wp
                #cn, sn = (cn*c1 - sn*s1) >> wp, (sn*c1 + cn*s1) >> wp
                t1 = (cnre*c2re - cnim*c2im - snre*s2re + snim*s2im) >> wp
                t2 = (cnre*c2im + cnim*c2re - snre*s2im - snim*s2re) >> wp
                t3 = (snre*c2re - snim*c2im + cnre*s2re - cnim*s2im) >> wp
                t4 = (snre*c2im + snim*c2re + cnre*s2im + cnim*s2re) >> wp
                cnre = t1
                cnim = t2
                snre = t3
                snim = t4
                termre = ((are * cnre - aim * cnim) >> wp)
                termim = ((aim * cnre + are * cnim) >> wp)
                sre += ((are * cnre - aim * cnim) >> wp)
                sim += ((aim * cnre + are * cnim) >> wp)
                n += 2
            sre = (sre << 1)
            sim = (sim << 1)
            sre = from_man_exp(sre, -wp, mp.prec, 'n')
            sim = from_man_exp(sim, -wp, mp.prec, 'n')
            s = mpc(sre, sim)
    s *= nthroot(q, 4)
    return s
Ejemplo n.º 9
0
def _djacobi_theta3(z, q, nd):
    """nd=1,2,3 order of the derivative with respect to z"""
    MIN = 2
    extra1 = 10
    extra2 = 20
    if isinstance(q, mpf) and isinstance(z, mpf):
        s = MP_ZERO
        wp = mp.prec + extra1
        x = to_fixed(q._mpf_, wp)
        a = b = x
        x2 = (x*x) >> wp
        c1, s1 = cos_sin(mpf_shift(z._mpf_, 1), wp)
        c1 = to_fixed(c1, wp)
        s1 = to_fixed(s1, wp)
        cn = c1
        sn = s1
        if (nd&1):
            s += (a * sn) >> wp
        else:
            s += (a * cn) >> wp
        n = 2
        while abs(a) > MIN:
            b = (b*x2) >> wp
            a = (a*b) >> wp
            cn, sn = (cn*c1 - sn*s1) >> wp, (sn*c1 + cn*s1) >> wp
            if nd&1:
                s += (a * sn * n**nd) >> wp
            else:
                s += (a * cn * n**nd) >> wp
            n += 1
        s = -(s << (nd+1))
        s = mpf(from_man_exp(s, -wp, mp.prec, 'n'))
    # case z real, q complex
    elif isinstance(z, mpf):
        wp = mp.prec + extra2
        xre, xim = q._mpc_
        xre = to_fixed(xre, wp)
        xim = to_fixed(xim, wp)
        x2re = (xre*xre - xim*xim) >> wp
        x2im = (xre*xim) >> (wp - 1)
        are = bre = xre
        aim = bim = xim
        c1, s1 = cos_sin(mpf_shift(z._mpf_, 1), wp)
        c1 = to_fixed(c1, wp)
        s1 = to_fixed(s1, wp)
        cn = c1
        sn = s1
        if (nd&1):
            sre = (are * sn) >> wp
            sim = (aim * sn) >> wp
        else:
            sre = (are * cn) >> wp
            sim = (aim * cn) >> wp
        n = 2
        while are**2 + aim**2 > MIN:
            bre, bim = (bre * x2re - bim * x2im) >> wp, \
                       (bre * x2im + bim * x2re) >> wp
            are, aim = (are * bre - aim * bim) >> wp,   \
                       (are * bim + aim * bre) >> wp
            cn, sn = (cn*c1 - sn*s1) >> wp, (sn*c1 + cn*s1) >> wp
            if nd&1:
                sre += (are * sn * n**nd) >> wp
                sim += (aim * sn * n**nd) >> wp
            else:
                sre += (are * cn * n**nd) >> wp
                sim += (aim * cn * n**nd) >> wp
            n += 1
        sre = -(sre << (nd+1))
        sim = -(sim << (nd+1))
        sre = from_man_exp(sre, -wp, mp.prec, 'n')
        sim = from_man_exp(sim, -wp, mp.prec, 'n')
        s = mpc(sre, sim)
    #case z complex, q real
    elif isinstance(q, mpf):
        wp = mp.prec + extra2
        x = to_fixed(q._mpf_, wp)
        a = b = x
        x2 = (x*x) >> wp
        prec0 = mp.prec
        mp.prec = wp
        c1 = cos(2*z)
        s1 = sin(2*z)
        mp.prec = prec0
        cnre = c1re = to_fixed(c1.real._mpf_, wp)
        cnim = c1im = to_fixed(c1.imag._mpf_, wp)
        snre = s1re = to_fixed(s1.real._mpf_, wp)
        snim = s1im = to_fixed(s1.imag._mpf_, wp)
        if (nd&1):
            sre = (a * snre) >> wp
            sim = (a * snim) >> wp
        else:
            sre = (a * cnre) >> wp
            sim = (a * cnim) >> wp
        n = 2
        while abs(a) > MIN:
            b = (b*x2) >> wp
            a = (a*b) >> wp
            t1 = (cnre*c1re - cnim*c1im - snre*s1re + snim*s1im) >> wp
            t2 = (cnre*c1im + cnim*c1re - snre*s1im - snim*s1re) >> wp
            t3 = (snre*c1re - snim*c1im + cnre*s1re - cnim*s1im) >> wp
            t4 = (snre*c1im + snim*c1re + cnre*s1im + cnim*s1re) >> wp
            cnre = t1
            cnim = t2
            snre = t3
            snim = t4
            if (nd&1):
                sre += (a * snre * n**nd) >> wp
                sim += (a * snim * n**nd) >> wp
            else:
                sre += (a * cnre * n**nd) >> wp
                sim += (a * cnim * n**nd) >> wp
            n += 1
        sre = -(sre << (nd+1))
        sim = -(sim << (nd+1))
        sre = from_man_exp(sre, -wp, mp.prec, 'n')
        sim = from_man_exp(sim, -wp, mp.prec, 'n')
        s = mpc(sre, sim)
    # case z and q complex
    else:
        wp = mp.prec + extra2
        xre, xim = q._mpc_
        xre = to_fixed(xre, wp)
        xim = to_fixed(xim, wp)
        x2re = (xre*xre - xim*xim) >> wp
        x2im = (xre*xim) >> (wp - 1)
        are = bre = xre
        aim = bim = xim
        prec0 = mp.prec
        mp.prec = wp
        # cos(2*z), sin(2*z) with z complex
        c1 = cos(2*z)
        s1 = sin(2*z)
        mp.prec = prec0
        cnre = c1re = to_fixed(c1.real._mpf_, wp)
        cnim = c1im = to_fixed(c1.imag._mpf_, wp)
        snre = s1re = to_fixed(s1.real._mpf_, wp)
        snim = s1im = to_fixed(s1.imag._mpf_, wp)
        if (nd&1):
            sre = (are * snre - aim * snim) >> wp
            sim = (aim * snre + are * snim) >> wp
        else:
            sre = (are * cnre - aim * cnim) >> wp
            sim = (aim * cnre + are * cnim) >> wp
        n = 2
        while are**2 + aim**2 > MIN:
            bre, bim = (bre * x2re - bim * x2im) >> wp, \
                       (bre * x2im + bim * x2re) >> wp
            are, aim = (are * bre - aim * bim) >> wp,   \
                       (are * bim + aim * bre) >> wp
            t1 = (cnre*c1re - cnim*c1im - snre*s1re + snim*s1im) >> wp
            t2 = (cnre*c1im + cnim*c1re - snre*s1im - snim*s1re) >> wp
            t3 = (snre*c1re - snim*c1im + cnre*s1re - cnim*s1im) >> wp
            t4 = (snre*c1im + snim*c1re + cnre*s1im + cnim*s1re) >> wp
            cnre = t1
            cnim = t2
            snre = t3
            snim = t4
            if(nd&1):
                sre += ((are * snre - aim * snim) * n**nd) >> wp
                sim += ((aim * snre + are * snim) * n**nd) >> wp
            else:
                sre += ((are * cnre - aim * cnim) * n**nd) >> wp
                sim += ((aim * cnre + are * cnim) * n**nd) >> wp
            n += 1
        sre = -(sre << (nd+1))
        sim = -(sim << (nd+1))
        sre = from_man_exp(sre, -wp, mp.prec, 'n')
        sim = from_man_exp(sim, -wp, mp.prec, 'n')
        s = mpc(sre, sim)
    if (nd&1):
        return (-1)**(nd//2) * s
    else:
        return (-1)**(1 + nd//2) * s
Ejemplo n.º 10
0
def _jacobi_theta3(z, q):
    extra1 = 10
    extra2 = 20
    MIN = 2
    if z == zero:
        if isinstance(q, mpf):
            wp = mp.prec + extra1
            x = to_fixed(q._mpf_, wp)
            s = x
            a = b = x
            x2 = (x*x) >> wp
            while abs(a) > MIN:
                b = (b*x2) >> wp
                a = (a*b) >> wp
                s += a
            s = (1 << wp) + (s << 1)
            s = mpf(from_man_exp(s, -wp, mp.prec, 'n'))
            return s
        else:
            wp = mp.prec + extra1
            xre, xim = q._mpc_
            xre = to_fixed(xre, wp)
            xim = to_fixed(xim, wp)
            x2re = (xre*xre - xim*xim) >> wp
            x2im = (xre*xim) >> (wp - 1)
            sre = are = bre = xre
            sim = aim = bim = xim
            while are**2 + aim**2 > MIN:
                bre, bim = (bre * x2re - bim * x2im) >> wp, \
                           (bre * x2im + bim * x2re) >> wp
                are, aim = (are * bre - aim * bim) >> wp,   \
                           (are * bim + aim * bre) >> wp
                sre += are
                sim += aim
            sre = (1 << wp) + (sre << 1)
            sim = (sim << 1)
            sre = from_man_exp(sre, -wp, mp.prec, 'n')
            sim = from_man_exp(sim, -wp, mp.prec, 'n')
            s = mpc(sre, sim)
            return s
    else:
        if isinstance(q, mpf) and isinstance(z, mpf):
            s = MP_ZERO
            wp = mp.prec + extra1
            x = to_fixed(q._mpf_, wp)
            a = b = x
            x2 = (x*x) >> wp
            c1, s1 = cos_sin(mpf_shift(z._mpf_, 1), wp)
            c1 = to_fixed(c1, wp)
            s1 = to_fixed(s1, wp)
            cn = c1
            sn = s1
            s += (a * cn) >> wp
            while abs(a) > MIN:
                b = (b*x2) >> wp
                a = (a*b) >> wp
                cn, sn = (cn*c1 - sn*s1) >> wp, (sn*c1 + cn*s1) >> wp
                s += (a * cn) >> wp
            s = (1 << wp) + (s << 1)
            s = mpf(from_man_exp(s, -wp, mp.prec, 'n'))
            return s
        # case z real, q complex
        elif isinstance(z, mpf):
            wp = mp.prec + extra2
            xre, xim = q._mpc_
            xre = to_fixed(xre, wp)
            xim = to_fixed(xim, wp)
            x2re = (xre*xre - xim*xim) >> wp
            x2im = (xre*xim) >> (wp - 1)
            are = bre = xre
            aim = bim = xim
            c1, s1 = cos_sin(mpf_shift(z._mpf_, 1), wp)
            c1 = to_fixed(c1, wp)
            s1 = to_fixed(s1, wp)
            cn = c1
            sn = s1
            sre = (are * cn) >> wp
            sim = (aim * cn) >> wp
            while are**2 + aim**2 > MIN:
                bre, bim = (bre * x2re - bim * x2im) >> wp, \
                           (bre * x2im + bim * x2re) >> wp
                are, aim = (are * bre - aim * bim) >> wp,   \
                           (are * bim + aim * bre) >> wp
                cn, sn = (cn*c1 - sn*s1) >> wp, (sn*c1 + cn*s1) >> wp

                sre += (are * cn) >> wp
                sim += (aim * cn) >> wp
            sre = (1 << wp) + (sre << 1)
            sim = (sim << 1)
            sre = from_man_exp(sre, -wp, mp.prec, 'n')
            sim = from_man_exp(sim, -wp, mp.prec, 'n')
            s = mpc(sre, sim)
            return s
        #case z complex, q real
        elif isinstance(q, mpf):
            wp = mp.prec + extra2
            x = to_fixed(q._mpf_, wp)
            a = b = x
            x2 = (x*x) >> wp
            prec0 = mp.prec
            mp.prec = wp
            c1 = cos(2*z)
            s1 = sin(2*z)
            mp.prec = prec0
            cnre = c1re = to_fixed(c1.real._mpf_, wp)
            cnim = c1im = to_fixed(c1.imag._mpf_, wp)
            snre = s1re = to_fixed(s1.real._mpf_, wp)
            snim = s1im = to_fixed(s1.imag._mpf_, wp)
            sre = (a * cnre) >> wp
            sim = (a * cnim) >> wp
            while abs(a) > MIN:
                b = (b*x2) >> wp
                a = (a*b) >> wp
                t1 = (cnre*c1re - cnim*c1im - snre*s1re + snim*s1im) >> wp
                t2 = (cnre*c1im + cnim*c1re - snre*s1im - snim*s1re) >> wp
                t3 = (snre*c1re - snim*c1im + cnre*s1re - cnim*s1im) >> wp
                t4 = (snre*c1im + snim*c1re + cnre*s1im + cnim*s1re) >> wp
                cnre = t1
                cnim = t2
                snre = t3
                snim = t4
                sre += (a * cnre) >> wp
                sim += (a * cnim) >> wp
            sre = (1 << wp) + (sre << 1)
            sim = (sim << 1)
            sre = from_man_exp(sre, -wp, mp.prec, 'n')
            sim = from_man_exp(sim, -wp, mp.prec, 'n')
            s = mpc(sre, sim)
            return s
        # case z and q complex
        else:
            wp = mp.prec + extra2
            xre, xim = q._mpc_
            xre = to_fixed(xre, wp)
            xim = to_fixed(xim, wp)
            x2re = (xre*xre - xim*xim) >> wp
            x2im = (xre*xim) >> (wp - 1)
            are = bre = xre
            aim = bim = xim
            prec0 = mp.prec
            mp.prec = wp
            # cos(2*z), sin(2*z) with z complex
            c1 = cos(2*z)
            s1 = sin(2*z)
            mp.prec = prec0
            cnre = c1re = to_fixed(c1.real._mpf_, wp)
            cnim = c1im = to_fixed(c1.imag._mpf_, wp)
            snre = s1re = to_fixed(s1.real._mpf_, wp)
            snim = s1im = to_fixed(s1.imag._mpf_, wp)
            sre = (are * cnre - aim * cnim) >> wp
            sim = (aim * cnre + are * cnim) >> wp
            while are**2 + aim**2 > MIN:
                bre, bim = (bre * x2re - bim * x2im) >> wp, \
                           (bre * x2im + bim * x2re) >> wp
                are, aim = (are * bre - aim * bim) >> wp,   \
                           (are * bim + aim * bre) >> wp
                t1 = (cnre*c1re - cnim*c1im - snre*s1re + snim*s1im) >> wp
                t2 = (cnre*c1im + cnim*c1re - snre*s1im - snim*s1re) >> wp
                t3 = (snre*c1re - snim*c1im + cnre*s1re - cnim*s1im) >> wp
                t4 = (snre*c1im + snim*c1re + cnre*s1im + cnim*s1re) >> wp
                cnre = t1
                cnim = t2
                snre = t3
                snim = t4
                sre += (are * cnre - aim * cnim) >> wp
                sim += (aim * cnre + are * cnim) >> wp
            sre = (1 << wp) + (sre << 1)
            sim = (sim << 1)
            sre = from_man_exp(sre, -wp, mp.prec, 'n')
            sim = from_man_exp(sim, -wp, mp.prec, 'n')
            s = mpc(sre, sim)
            return s
Ejemplo n.º 11
0
def _djacobi_theta2(z, q, nd):
    MIN = 2
    extra1 = 10
    extra2 = 20
    if isinstance(q, mpf) and isinstance(z, mpf):
        wp = mp.prec + extra1
        x = to_fixed(q._mpf_, wp)
        x2 = (x*x) >> wp
        a = b = x2
        c1, s1 = cos_sin(z._mpf_, wp)
        cn = c1 = to_fixed(c1, wp)
        sn = s1 = to_fixed(s1, wp)
        c2 = (c1*c1 - s1*s1) >> wp
        s2 = (c1 * s1) >> (wp - 1)
        cn, sn = (cn*c2 - sn*s2) >> wp, (sn*c2 + cn*s2) >> wp
        if (nd&1):
            s = s1 + ((a * sn * 3**nd) >> wp)
        else:
            s = c1 + ((a * cn * 3**nd) >> wp)
        n = 2
        while abs(a) > MIN:
            b = (b*x2) >> wp
            a = (a*b) >> wp
            cn, sn = (cn*c2 - sn*s2) >> wp, (sn*c2 + cn*s2) >> wp
            if nd&1:
                s += (a * sn * (2*n+1)**nd) >> wp
            else:
                s += (a * cn * (2*n+1)**nd) >> wp
            n += 1
        s = -(s << 1)
        s = mpf(from_man_exp(s, -wp, mp.prec, 'n'))
        # case z real, q complex
    elif isinstance(z, mpf):
        wp = mp.prec + extra2
        xre, xim = q._mpc_
        xre = to_fixed(xre, wp)
        xim = to_fixed(xim, wp)
        x2re = (xre*xre - xim*xim) >> wp
        x2im = (xre*xim) >> (wp - 1)
        are = bre = x2re
        aim = bim = x2im
        c1, s1 = cos_sin(z._mpf_, wp)
        cn = c1 = to_fixed(c1, wp)
        sn = s1 = to_fixed(s1, wp)
        c2 = (c1*c1 - s1*s1) >> wp
        s2 = (c1 * s1) >> (wp - 1)
        cn, sn = (cn*c2 - sn*s2) >> wp, (sn*c2 + cn*s2) >> wp
        if (nd&1):
            sre = s1 + ((are * sn * 3**nd) >> wp)
            sim = ((aim * sn * 3**nd) >> wp)
        else:
            sre = c1 + ((are * cn * 3**nd) >> wp)
            sim = ((aim * cn * 3**nd) >> wp)
        n = 5
        while are**2 + aim**2 > MIN:
            bre, bim = (bre * x2re - bim * x2im) >> wp, \
                       (bre * x2im + bim * x2re) >> wp
            are, aim = (are * bre - aim * bim) >> wp,   \
                       (are * bim + aim * bre) >> wp
            cn, sn = (cn*c2 - sn*s2) >> wp, (sn*c2 + cn*s2) >> wp

            if (nd&1):
                sre += ((are * sn * n**nd) >> wp)
                sim += ((aim * sn * n**nd) >> wp)
            else:
                sre += ((are * cn * n**nd) >> wp)
                sim += ((aim * cn * n**nd) >> wp)
            n += 2
        sre = -(sre << 1)
        sim = -(sim << 1)
        sre = from_man_exp(sre, -wp, mp.prec, 'n')
        sim = from_man_exp(sim, -wp, mp.prec, 'n')
        s = mpc(sre, sim)
    #case z complex, q real
    elif isinstance(q, mpf):
        wp = mp.prec + extra2
        x = to_fixed(q._mpf_, wp)
        x2 = (x*x) >> wp
        a = b = x2
        prec0 = mp.prec
        mp.prec = wp
        c1 = cos(z)
        s1 = sin(z)
        mp.prec = prec0
        cnre = c1re = to_fixed(c1.real._mpf_, wp)
        cnim = c1im = to_fixed(c1.imag._mpf_, wp)
        snre = s1re = to_fixed(s1.real._mpf_, wp)
        snim = s1im = to_fixed(s1.imag._mpf_, wp)
        #c2 = (c1*c1 - s1*s1) >> wp
        c2re = (c1re*c1re - c1im*c1im - s1re*s1re + s1im*s1im) >> wp
        c2im = (c1re*c1im - s1re*s1im) >> (wp - 1)
        #s2 = (c1 * s1) >> (wp - 1)
        s2re = (c1re*s1re - c1im*s1im) >> (wp - 1)
        s2im = (c1re*s1im + c1im*s1re) >> (wp - 1)
        #cn, sn = (cn*c2 - sn*s2) >> wp, (sn*c2 + cn*s2) >> wp
        t1 = (cnre*c2re - cnim*c2im - snre*s2re + snim*s2im) >> wp
        t2 = (cnre*c2im + cnim*c2re - snre*s2im - snim*s2re) >> wp
        t3 = (snre*c2re - snim*c2im + cnre*s2re - cnim*s2im) >> wp
        t4 = (snre*c2im + snim*c2re + cnre*s2im + cnim*s2re) >> wp
        cnre = t1
        cnim = t2
        snre = t3
        snim = t4

        if (nd&1):
            sre = s1re + ((a * snre * 3**nd) >> wp)
            sim = s1im + ((a * snim * 3**nd) >> wp)
        else:
            sre = c1re + ((a * cnre * 3**nd) >> wp)
            sim = c1im + ((a * cnim * 3**nd) >> wp)
        n = 5
        while abs(a) > MIN:
            b = (b*x2) >> wp
            a = (a*b) >> wp
            t1 = (cnre*c2re - cnim*c2im - snre*s2re + snim*s2im) >> wp
            t2 = (cnre*c2im + cnim*c2re - snre*s2im - snim*s2re) >> wp
            t3 = (snre*c2re - snim*c2im + cnre*s2re - cnim*s2im) >> wp
            t4 = (snre*c2im + snim*c2re + cnre*s2im + cnim*s2re) >> wp
            cnre = t1
            cnim = t2
            snre = t3
            snim = t4
            if (nd&1):
                sre += ((a * snre * n**nd) >> wp)
                sim += ((a * snim * n**nd) >> wp)
            else:
                sre += ((a * cnre * n**nd) >> wp)
                sim += ((a * cnim * n**nd) >> wp)
            n += 2
        sre = -(sre << 1)
        sim = -(sim << 1)
        sre = from_man_exp(sre, -wp, mp.prec, 'n')
        sim = from_man_exp(sim, -wp, mp.prec, 'n')
        s = mpc(sre, sim)
    # case z and q complex
    else:
        wp = mp.prec + extra2
        xre, xim = q._mpc_
        xre = to_fixed(xre, wp)
        xim = to_fixed(xim, wp)
        x2re = (xre*xre - xim*xim) >> wp
        x2im = (xre*xim) >> (wp - 1)
        are = bre = x2re
        aim = bim = x2im
        prec0 = mp.prec
        mp.prec = wp
        # cos(2*z), siz(2*z) with z complex
        c1 = cos(z)
        s1 = sin(z)
        mp.prec = prec0
        cnre = c1re = to_fixed(c1.real._mpf_, wp)
        cnim = c1im = to_fixed(c1.imag._mpf_, wp)
        snre = s1re = to_fixed(s1.real._mpf_, wp)
        snim = s1im = to_fixed(s1.imag._mpf_, wp)
        c2re = (c1re*c1re - c1im*c1im - s1re*s1re + s1im*s1im) >> wp
        c2im = (c1re*c1im - s1re*s1im) >> (wp - 1)
        s2re = (c1re*s1re - c1im*s1im) >> (wp - 1)
        s2im = (c1re*s1im + c1im*s1re) >> (wp - 1)
        t1 = (cnre*c2re - cnim*c2im - snre*s2re + snim*s2im) >> wp
        t2 = (cnre*c2im + cnim*c2re - snre*s2im - snim*s2re) >> wp
        t3 = (snre*c2re - snim*c2im + cnre*s2re - cnim*s2im) >> wp
        t4 = (snre*c2im + snim*c2re + cnre*s2im + cnim*s2re) >> wp
        cnre = t1
        cnim = t2
        snre = t3
        snim = t4
        if (nd&1):
            sre = s1re + (((are * snre - aim * snim) * 3**nd) >> wp)
            sim = s1im + (((are * snim + aim * snre)* 3**nd) >> wp)
        else:
            sre = c1re + (((are * cnre - aim * cnim) * 3**nd) >> wp)
            sim = c1im + (((are * cnim + aim * cnre)* 3**nd) >> wp)
        n = 5
        while are**2 + aim**2 > MIN:
            bre, bim = (bre * x2re - bim * x2im) >> wp, \
                       (bre * x2im + bim * x2re) >> wp
            are, aim = (are * bre - aim * bim) >> wp,   \
                       (are * bim + aim * bre) >> wp
            #cn, sn = (cn*c1 - sn*s1) >> wp, (sn*c1 + cn*s1) >> wp
            t1 = (cnre*c2re - cnim*c2im - snre*s2re + snim*s2im) >> wp
            t2 = (cnre*c2im + cnim*c2re - snre*s2im - snim*s2re) >> wp
            t3 = (snre*c2re - snim*c2im + cnre*s2re - cnim*s2im) >> wp
            t4 = (snre*c2im + snim*c2re + cnre*s2im + cnim*s2re) >> wp
            cnre = t1
            cnim = t2
            snre = t3
            snim = t4
            if (nd&1):
                sre += (((are * snre - aim * snim) * n**nd) >> wp)
                sim += (((aim * snre + are * snim) * n**nd) >> wp)
            else:
                sre += (((are * cnre - aim * cnim) * n**nd) >> wp)
                sim += (((aim * cnre + are * cnim) * n**nd) >> wp)
            n += 2
        sre = -(sre << 1)
        sim = -(sim << 1)
        sre = from_man_exp(sre, -wp, mp.prec, 'n')
        sim = from_man_exp(sim, -wp, mp.prec, 'n')
        s = mpc(sre, sim)
    s *= nthroot(q, 4)
    if (nd&1):
        return (-1)**(nd//2) * s
    else:
        return (-1)**(1 + nd//2) * s
Ejemplo n.º 12
0
    Complex exponential function.

    We use the direct formula exp(a+bi) = exp(a) * (cos(b) + sin(b)*i)
    for the computation. This formula is very nice because it is
    pewrectly stable; since we just do real multiplications, the only
    numerical errors that can crewp in are single-ulp rnd errors.

    The formula is efficient since mpmath's real exp is quite fast and
    since we can compute cos and sin simultaneously.

    It is no problem if a and b are large; if the implementations of
    exp/cos/sin are accurate and efficient for all real numbers, then
    so is this function for all complex numbers.
    """
    if a == fzero:
        return cos_sin(b, prec, rnd)
    mag = mpf_exp(a, prec+4, rnd)
    c, s = cos_sin(b, prec+4, rnd)
    re = mpf_mul(mag, c, prec, rnd)
    im = mpf_mul(mag, s, prec, rnd)
    return re, im

def mpc_log(z, prec, rnd=round_fast):
    return mpf_log(mpc_abs(z, prec, rnd), prec, rnd), mpc_arg(z, prec, rnd)

def mpc_cos((a, b), prec, rnd=round_fast):
    """Complex cosine. The formula used is cos(a+bi) = cos(a)*cosh(b) -
    sin(a)*sinh(b)*i.

    The same comments apply as for the complex exp: only real
    multiplications are pewrormed, so no cancellation errors are
Ejemplo n.º 13
0
    Complex exponential function.

    We use the direct formula exp(a+bi) = exp(a) * (cos(b) + sin(b)*i)
    for the computation. This formula is very nice because it is
    pewrectly stable; since we just do real multiplications, the only
    numerical errors that can crewp in are single-ulp rnd errors.

    The formula is efficient since mpmath's real exp is quite fast and
    since we can compute cos and sin simultaneously.

    It is no problem if a and b are large; if the implementations of
    exp/cos/sin are accurate and efficient for all real numbers, then
    so is this function for all complex numbers.
    """
    if a == fzero:
        return cos_sin(b, prec, rnd)
    mag = mpf_exp(a, prec + 4, rnd)
    c, s = cos_sin(b, prec + 4, rnd)
    re = mpf_mul(mag, c, prec, rnd)
    im = mpf_mul(mag, s, prec, rnd)
    return re, im


def mpc_log(z, prec, rnd=round_fast):
    return mpf_log(mpc_abs(z, prec, rnd), prec, rnd), mpc_arg(z, prec, rnd)


def mpc_cos((a, b), prec, rnd=round_fast):
    """Complex cosine. The formula used is cos(a+bi) = cos(a)*cosh(b) -
    sin(a)*sinh(b)*i.
Ejemplo n.º 14
0
def mpf_ci_si(x, prec, rnd=round_fast, which=2):
    """
    Calculation of Ci(x), Si(x) for real x.

    which = 0 -- returns (Ci(x), -)
    which = 1 -- returns (Si(x), -)
    which = 2 -- returns (Ci(x), Si(x))

    Note: if x < 0, Ci(x) needs an additional imaginary term, pi*i.
    """
    wp = prec + 20
    sign, man, exp, bc = x
    ci, si = None, None
    if not man:
        if x == fzero:
            return (fninf, fzero)
        if x == fnan:
            return (x, x)
        ci = fzero
        if which != 0:
            if x == finf:
                si = mpf_shift(mpf_pi(prec, rnd), -1)
            if x == fninf:
                si = mpf_neg(mpf_shift(mpf_pi(prec, negative_rnd[rnd]), -1))
        return (ci, si)
    # For small x: Ci(x) ~ euler + log(x), Si(x) ~ x
    mag = exp + bc
    if mag < -wp:
        if which != 0:
            si = mpf_perturb(x, 1 - sign, prec, rnd)
        if which != 1:
            y = mpf_euler(wp)
            xabs = mpf_abs(x)
            ci = mpf_add(y, mpf_log(xabs, wp), prec, rnd)
        return ci, si
    # For huge x: Ci(x) ~ sin(x)/x, Si(x) ~ pi/2
    elif mag > wp:
        if which != 0:
            if sign:
                si = mpf_neg(mpf_pi(prec, negative_rnd[rnd]))
            else:
                si = mpf_pi(prec, rnd)
            si = mpf_shift(si, -1)
        if which != 1:
            ci = mpf_div(mpf_sin(x, wp), x, prec, rnd)
        return ci, si
    else:
        wp += abs(mag)
    # Use an asymptotic series? The smallest value of n!/x^n
    # occurs for n ~ x, where the magnitude is ~ exp(-x).
    asymptotic = mag - 1 > math.log(wp, 2)
    # Case 1: convergent series near 0
    if not asymptotic:
        if which != 0:
            si = mpf_pos(mpf_ci_si_taylor(x, wp, 1), prec, rnd)
        if which != 1:
            ci = mpf_ci_si_taylor(x, wp, 0)
            ci = mpf_add(ci, mpf_euler(wp), wp)
            ci = mpf_add(ci, mpf_log(mpf_abs(x), wp), prec, rnd)
        return ci, si
    x = mpf_abs(x)
    # Case 2: asymptotic series for x >> 1
    xf = to_fixed(x, wp)
    xr = (MP_ONE << (2 * wp)) // xf  # 1/x
    s1 = (MP_ONE << wp)
    s2 = xr
    t = xr
    k = 2
    while t:
        t = -t
        t = (t * xr * k) >> wp
        k += 1
        s1 += t
        t = (t * xr * k) >> wp
        k += 1
        s2 += t
    s1 = from_man_exp(s1, -wp)
    s2 = from_man_exp(s2, -wp)
    s1 = mpf_div(s1, x, wp)
    s2 = mpf_div(s2, x, wp)
    cos, sin = cos_sin(x, wp)
    # Ci(x) = sin(x)*s1-cos(x)*s2
    # Si(x) = pi/2-cos(x)*s1-sin(x)*s2
    if which != 0:
        si = mpf_add(mpf_mul(cos, s1), mpf_mul(sin, s2), wp)
        si = mpf_sub(mpf_shift(mpf_pi(wp), -1), si, wp)
        if sign:
            si = mpf_neg(si)
        si = mpf_pos(si, prec, rnd)
    if which != 1:
        ci = mpf_sub(mpf_mul(sin, s1), mpf_mul(cos, s2), prec, rnd)
    return ci, si
Ejemplo n.º 15
0
def mpc_zeta(s, prec, rnd=round_fast, alt=0):
    re, im = s
    if im == fzero:
        return mpf_zeta(re, prec, rnd, alt), fzero
    wp = prec + 20
    # Reflection formula. To be rigorous, we should reflect to the left of
    # re = 1/2 (see comments for mpf_zeta), but this leads to unnecessary
    # slowdown for interesting values of s
    if mpf_lt(re, fzero):
        # XXX: could use the separate refl. formula for Dirichlet eta
        if alt:
            q = mpc_sub(mpc_one, mpc_pow(mpc_two, mpc_sub(mpc_one, s, wp), wp),
                        wp)
            return mpc_mul(mpc_zeta(s, wp), q, prec, rnd)
        # XXX: -1 should be done exactly
        y = mpc_sub(mpc_one, s, 10 * wp)
        a = mpc_gamma(y, wp)
        b = mpc_zeta(y, wp)
        c = mpc_sin_pi(mpc_shift(s, -1), wp)
        rsign, rman, rexp, rbc = re
        isign, iman, iexp, ibc = im
        mag = max(rexp + rbc, iexp + ibc)
        wp2 = wp + mag
        pi = mpf_pi(wp + wp2)
        pi2 = (mpf_shift(pi, 1), fzero)
        d = mpc_div_mpf(mpc_pow(pi2, s, wp2), pi, wp2)
        return mpc_mul(a, mpc_mul(b, mpc_mul(c, d, wp), wp), prec, rnd)
    n = int(wp / 2.54 + 5)
    n += int(0.9 * abs(to_int(im)))
    d = borwein_coefficients(n)
    ref = to_fixed(re, wp)
    imf = to_fixed(im, wp)
    tre = MP_ZERO
    tim = MP_ZERO
    one = MP_ONE << wp
    one_2wp = MP_ONE << (2 * wp)
    critical_line = re == fhalf
    for k in xrange(n):
        log = log_int_fixed(k + 1, wp)
        # A square root is much cheaper than an exp
        if critical_line:
            w = one_2wp // sqrt_fixed((k + 1) << wp, wp)
        else:
            w = to_fixed(mpf_exp(from_man_exp(-ref * log, -2 * wp), wp), wp)
        if k & 1:
            w *= (d[n] - d[k])
        else:
            w *= (d[k] - d[n])
        wre, wim = cos_sin(
            from_man_exp(-imf * log_int_fixed(k + 1, wp), -2 * wp), wp)
        tre += (w * to_fixed(wre, wp)) >> wp
        tim += (w * to_fixed(wim, wp)) >> wp
    tre //= (-d[n])
    tim //= (-d[n])
    tre = from_man_exp(tre, -wp, wp)
    tim = from_man_exp(tim, -wp, wp)
    if alt:
        return mpc_pos((tre, tim), prec, rnd)
    else:
        q = mpc_sub(mpc_one, mpc_pow(mpc_two, mpc_sub(mpc_one, s, wp), wp), wp)
        return mpc_div((tre, tim), q, prec, rnd)
Ejemplo n.º 16
0
def mpf_ci_si(x, prec, rnd=round_fast, which=2):
    """
    Calculation of Ci(x), Si(x) for real x.

    which = 0 -- returns (Ci(x), -)
    which = 1 -- returns (Si(x), -)
    which = 2 -- returns (Ci(x), Si(x))

    Note: if x < 0, Ci(x) needs an additional imaginary term, pi*i.
    """
    wp = prec + 20
    sign, man, exp, bc = x
    ci, si = None, None
    if not man:
        if x == fzero:
            return (fninf, fzero)
        if x == fnan:
            return (x, x)
        ci = fzero
        if which != 0:
            if x == finf:
                si = mpf_shift(mpf_pi(prec, rnd), -1)
            if x == fninf:
                si = mpf_neg(mpf_shift(mpf_pi(prec, negative_rnd[rnd]), -1))
        return (ci, si)
    # For small x: Ci(x) ~ euler + log(x), Si(x) ~ x
    mag = exp+bc
    if mag < -wp:
        if which != 0:
            si = mpf_perturb(x, 1-sign, prec, rnd)
        if which != 1:
            y = mpf_euler(wp)
            xabs = mpf_abs(x)
            ci = mpf_add(y, mpf_log(xabs, wp), prec, rnd)
        return ci, si
    # For huge x: Ci(x) ~ sin(x)/x, Si(x) ~ pi/2
    elif mag > wp:
        if which != 0:
            if sign:
                si = mpf_neg(mpf_pi(prec, negative_rnd[rnd]))
            else:
                si = mpf_pi(prec, rnd)
            si = mpf_shift(si, -1)
        if which != 1:
            ci = mpf_div(mpf_sin(x, wp), x, prec, rnd)
        return ci, si
    else:
        wp += abs(mag)
    # Use an asymptotic series? The smallest value of n!/x^n
    # occurs for n ~ x, where the magnitude is ~ exp(-x).
    asymptotic = mag-1 > math.log(wp, 2)
    # Case 1: convergent series near 0
    if not asymptotic:
        if which != 0:
            si = mpf_pos(mpf_ci_si_taylor(x, wp, 1), prec, rnd)
        if which != 1:
            ci = mpf_ci_si_taylor(x, wp, 0)
            ci = mpf_add(ci, mpf_euler(wp), wp)
            ci = mpf_add(ci, mpf_log(mpf_abs(x), wp), prec, rnd)
        return ci, si
    x = mpf_abs(x)
    # Case 2: asymptotic series for x >> 1
    xf = to_fixed(x, wp)
    xr = (MP_ONE<<(2*wp)) // xf   # 1/x
    s1 = (MP_ONE << wp)
    s2 = xr
    t = xr
    k = 2
    while t:
        t = -t
        t = (t*xr*k)>>wp
        k += 1
        s1 += t
        t = (t*xr*k)>>wp
        k += 1
        s2 += t
    s1 = from_man_exp(s1, -wp)
    s2 = from_man_exp(s2, -wp)
    s1 = mpf_div(s1, x, wp)
    s2 = mpf_div(s2, x, wp)
    cos, sin = cos_sin(x, wp)
    # Ci(x) = sin(x)*s1-cos(x)*s2
    # Si(x) = pi/2-cos(x)*s1-sin(x)*s2
    if which != 0:
        si = mpf_add(mpf_mul(cos, s1), mpf_mul(sin, s2), wp)
        si = mpf_sub(mpf_shift(mpf_pi(wp), -1), si, wp)
        if sign:
            si = mpf_neg(si)
        si = mpf_pos(si, prec, rnd)
    if which != 1:
        ci = mpf_sub(mpf_mul(sin, s1), mpf_mul(cos, s2), prec, rnd)
    return ci, si