def mpf_cos_sin_pi(x, prec, rnd=round_fast): """Accurate computation of (cos(pi*x), sin(pi*x)) for x close to an integer""" sign, man, exp, bc = x if not man: return cos_sin(x, prec, rnd) # Exactly an integer or half-integer? if exp >= -1: if exp == -1: c = fzero s = (fone, fnone)[bool(man & 2) ^ sign] elif exp == 0: c, s = (fnone, fzero) else: c, s = (fone, fzero) return c, s # Close to 0 ? size = exp + bc if size < -(prec+5): return (fone, mpf_mul(x, mpf_pi(wp), prec, rnd)) if sign: man = -man # Subtract nearest integer (= modulo pi) nint = ((man >> (-exp-1)) + 1) >> 1 man = man - (nint << (-exp)) x = from_man_exp(man, exp, prec) x = mpf_mul(x, mpf_pi(prec), prec) # Shifted an odd multiple of pi ? if nint & 1: c, s = cos_sin(x, prec, negative_rnd[rnd]) return mpf_neg(c), mpf_neg(s) else: return cos_sin(x, prec, rnd)
def mpf_cos_sin_pi(x, prec, rnd=round_fast): """Accurate computation of (cos(pi*x), sin(pi*x)) for x close to an integer""" sign, man, exp, bc = x if not man: return cos_sin(x, prec, rnd) # Exactly an integer or half-integer? if exp >= -1: if exp == -1: c = fzero s = (fone, fnone)[bool(man & 2) ^ sign] elif exp == 0: c, s = (fnone, fzero) else: c, s = (fone, fzero) return c, s # Close to 0 ? size = exp + bc if size < -(prec + 5): return (fone, mpf_mul(x, mpf_pi(wp), prec, rnd)) if sign: man = -man # Subtract nearest integer (= modulo pi) nint = ((man >> (-exp - 1)) + 1) >> 1 man = man - (nint << (-exp)) x = from_man_exp(man, exp, prec) x = mpf_mul(x, mpf_pi(prec), prec) # Shifted an odd multiple of pi ? if nint & 1: c, s = cos_sin(x, prec, negative_rnd[rnd]) return mpf_neg(c), mpf_neg(s) else: return cos_sin(x, prec, rnd)
def mpc_zeta(s, prec, rnd): re, im = s wp = prec + 20 n = int(wp/2.54 + 5) n += int(0.9*abs(to_int(im))) d = borwein_coefficients(n) ref = to_fixed(re, wp) imf = to_fixed(im, wp) tre = MP_ZERO tim = MP_ZERO one = MP_ONE << wp one_2wp = MP_ONE << (2*wp) critical_line = re == fhalf for k in xrange(n): log = log_int_fixed(k+1, wp) # A square root is much cheaper than an exp if critical_line: w = one_2wp // sqrt_fixed((k+1) << wp, wp) else: w = to_fixed(mpf_exp(from_man_exp(-ref*log, -2*wp), wp), wp) if k & 1: w *= (d[n] - d[k]) else: w *= (d[k] - d[n]) wre, wim = cos_sin(from_man_exp(-imf * log_int_fixed(k+1, wp), -2*wp), wp) tre += (w * to_fixed(wre, wp)) >> wp tim += (w * to_fixed(wim, wp)) >> wp tre //= (-d[n]) tim //= (-d[n]) tre = from_man_exp(tre, -wp, wp) tim = from_man_exp(tim, -wp, wp) q = mpc_sub(mpc_one, mpc_pow(mpc_two, mpc_sub(mpc_one, s, wp), wp), wp) return mpc_div((tre, tim), q, prec, rnd)
def mpc_zeta(s, prec, rnd): re, im = s wp = prec + 20 n = int(wp / 2.54 + 5) n += int(0.9 * abs(to_int(im))) d = borwein_coefficients(n) ref = to_fixed(re, wp) imf = to_fixed(im, wp) tre = MP_ZERO tim = MP_ZERO one = MP_ONE << wp one_2wp = MP_ONE << (2 * wp) critical_line = re == fhalf for k in xrange(n): log = log_int_fixed(k + 1, wp) # A square root is much cheaper than an exp if critical_line: w = one_2wp // sqrt_fixed((k + 1) << wp, wp) else: w = to_fixed(mpf_exp(from_man_exp(-ref * log, -2 * wp), wp), wp) if k & 1: w *= (d[n] - d[k]) else: w *= (d[k] - d[n]) wre, wim = cos_sin( from_man_exp(-imf * log_int_fixed(k + 1, wp), -2 * wp), wp) tre += (w * to_fixed(wre, wp)) >> wp tim += (w * to_fixed(wim, wp)) >> wp tre //= (-d[n]) tim //= (-d[n]) tre = from_man_exp(tre, -wp, wp) tim = from_man_exp(tim, -wp, wp) q = mpc_sub(mpc_one, mpc_pow(mpc_two, mpc_sub(mpc_one, s, wp), wp), wp) return mpc_div((tre, tim), q, prec, rnd)
def mpc_zeta(s, prec, rnd=round_fast, alt=0): re, im = s if im == fzero: return mpf_zeta(re, prec, rnd, alt), fzero wp = prec + 20 # Reflection formula. To be rigorous, we should reflect to the left of # re = 1/2 (see comments for mpf_zeta), but this leads to unnecessary # slowdown for interesting values of s if mpf_lt(re, fzero): # XXX: could use the separate refl. formula for Dirichlet eta if alt: q = mpc_sub(mpc_one, mpc_pow(mpc_two, mpc_sub(mpc_one, s, wp), wp), wp) return mpc_mul(mpc_zeta(s, wp), q, prec, rnd) # XXX: -1 should be done exactly y = mpc_sub(mpc_one, s, 10*wp) a = mpc_gamma(y, wp) b = mpc_zeta(y, wp) c = mpc_sin_pi(mpc_shift(s, -1), wp) rsign, rman, rexp, rbc = re isign, iman, iexp, ibc = im mag = max(rexp+rbc, iexp+ibc) wp2 = wp + mag pi = mpf_pi(wp+wp2) pi2 = (mpf_shift(pi, 1), fzero) d = mpc_div_mpf(mpc_pow(pi2, s, wp2), pi, wp2) return mpc_mul(a,mpc_mul(b,mpc_mul(c,d,wp),wp),prec,rnd) n = int(wp/2.54 + 5) n += int(0.9*abs(to_int(im))) d = borwein_coefficients(n) ref = to_fixed(re, wp) imf = to_fixed(im, wp) tre = MP_ZERO tim = MP_ZERO one = MP_ONE << wp one_2wp = MP_ONE << (2*wp) critical_line = re == fhalf for k in xrange(n): log = log_int_fixed(k+1, wp) # A square root is much cheaper than an exp if critical_line: w = one_2wp // sqrt_fixed((k+1) << wp, wp) else: w = to_fixed(mpf_exp(from_man_exp(-ref*log, -2*wp), wp), wp) if k & 1: w *= (d[n] - d[k]) else: w *= (d[k] - d[n]) wre, wim = cos_sin(from_man_exp(-imf * log_int_fixed(k+1, wp), -2*wp), wp) tre += (w * to_fixed(wre, wp)) >> wp tim += (w * to_fixed(wim, wp)) >> wp tre //= (-d[n]) tim //= (-d[n]) tre = from_man_exp(tre, -wp, wp) tim = from_man_exp(tim, -wp, wp) if alt: return mpc_pos((tre, tim), prec, rnd) else: q = mpc_sub(mpc_one, mpc_pow(mpc_two, mpc_sub(mpc_one, s, wp), wp), wp) return mpc_div((tre, tim), q, prec, rnd)
def mpc_tan(z, prec, rnd=round_fast): """Complex tangent. Computed as tan(a+bi) = sin(2a)/M + sinh(2b)/M*i where M = cos(2a) + cosh(2b).""" a, b = z asign, aman, aexp, abc = a bsign, bman, bexp, bbc = b if b == fzero: return mpf_tan(a, prec, rnd), fzero if a == fzero: return fzero, mpf_tanh(b, prec, rnd) wp = prec + 15 a = mpf_shift(a, 1) b = mpf_shift(b, 1) c, s = cos_sin(a, wp) ch, sh = cosh_sinh(b, wp) # TODO: handle cancellation when c ~= -1 and ch ~= 1 mag = mpf_add(c, ch, wp) re = mpf_div(s, mag, prec, rnd) im = mpf_div(sh, mag, prec, rnd) return re, im
def _jacobi_theta2(z, q): extra1 = 10 extra2 = 20 # the loops below break when the fixed precision quantities # a and b go to zero; # right shifting small negative numbers by wp one obtains -1, not zero, # so the condition a**2 + b**2 > MIN is used to break the loops. MIN = 2 if z == zero: if isinstance(q, mpf): wp = mp.prec + extra1 x = to_fixed(q._mpf_, wp) x2 = (x*x) >> wp a = b = x2 s = x2 while abs(a) > MIN: b = (b*x2) >> wp a = (a*b) >> wp s += a s = (1 << (wp+1)) + (s << 1) s = mpf(from_man_exp(s, -wp, mp.prec, 'n')) else: wp = mp.prec + extra1 xre, xim = q._mpc_ xre = to_fixed(xre, wp) xim = to_fixed(xim, wp) x2re = (xre*xre - xim*xim) >> wp x2im = (xre*xim) >> (wp - 1) are = bre = x2re aim = bim = x2im sre = (1<<wp) + are sim = aim while are**2 + aim**2 > MIN: bre, bim = (bre * x2re - bim * x2im) >> wp, \ (bre * x2im + bim * x2re) >> wp are, aim = (are * bre - aim * bim) >> wp, \ (are * bim + aim * bre) >> wp sre += are sim += aim sre = (sre << 1) sim = (sim << 1) sre = from_man_exp(sre, -wp, mp.prec, 'n') sim = from_man_exp(sim, -wp, mp.prec, 'n') s = mpc(sre, sim) else: if isinstance(q, mpf) and isinstance(z, mpf): wp = mp.prec + extra1 x = to_fixed(q._mpf_, wp) x2 = (x*x) >> wp a = b = x2 c1, s1 = cos_sin(z._mpf_, wp) cn = c1 = to_fixed(c1, wp) sn = s1 = to_fixed(s1, wp) c2 = (c1*c1 - s1*s1) >> wp s2 = (c1 * s1) >> (wp - 1) cn, sn = (cn*c2 - sn*s2) >> wp, (sn*c2 + cn*s2) >> wp s = c1 + ((a * cn) >> wp) while abs(a) > MIN: b = (b*x2) >> wp a = (a*b) >> wp cn, sn = (cn*c2 - sn*s2) >> wp, (sn*c2 + cn*s2) >> wp s += (a * cn) >> wp s = (s << 1) s = mpf(from_man_exp(s, -wp, mp.prec, 'n')) s *= nthroot(q, 4) return s # case z real, q complex elif isinstance(z, mpf): wp = mp.prec + extra2 xre, xim = q._mpc_ xre = to_fixed(xre, wp) xim = to_fixed(xim, wp) x2re = (xre*xre - xim*xim) >> wp x2im = (xre*xim) >> (wp - 1) are = bre = x2re aim = bim = x2im c1, s1 = cos_sin(z._mpf_, wp) cn = c1 = to_fixed(c1, wp) sn = s1 = to_fixed(s1, wp) c2 = (c1*c1 - s1*s1) >> wp s2 = (c1 * s1) >> (wp - 1) cn, sn = (cn*c2 - sn*s2) >> wp, (sn*c2 + cn*s2) >> wp sre = c1 + ((are * cn) >> wp) sim = ((aim * cn) >> wp) while are**2 + aim**2 > MIN: bre, bim = (bre * x2re - bim * x2im) >> wp, \ (bre * x2im + bim * x2re) >> wp are, aim = (are * bre - aim * bim) >> wp, \ (are * bim + aim * bre) >> wp cn, sn = (cn*c2 - sn*s2) >> wp, (sn*c2 + cn*s2) >> wp sre += ((are * cn) >> wp) sim += ((aim * cn) >> wp) sre = (sre << 1) sim = (sim << 1) sre = from_man_exp(sre, -wp, mp.prec, 'n') sim = from_man_exp(sim, -wp, mp.prec, 'n') s = mpc(sre, sim) #case z complex, q real elif isinstance(q, mpf): wp = mp.prec + extra2 x = to_fixed(q._mpf_, wp) x2 = (x*x) >> wp a = b = x2 prec0 = mp.prec mp.prec = wp c1 = cos(z) s1 = sin(z) mp.prec = prec0 cnre = c1re = to_fixed(c1.real._mpf_, wp) cnim = c1im = to_fixed(c1.imag._mpf_, wp) snre = s1re = to_fixed(s1.real._mpf_, wp) snim = s1im = to_fixed(s1.imag._mpf_, wp) #c2 = (c1*c1 - s1*s1) >> wp c2re = (c1re*c1re - c1im*c1im - s1re*s1re + s1im*s1im) >> wp c2im = (c1re*c1im - s1re*s1im) >> (wp - 1) #s2 = (c1 * s1) >> (wp - 1) s2re = (c1re*s1re - c1im*s1im) >> (wp - 1) s2im = (c1re*s1im + c1im*s1re) >> (wp - 1) #cn, sn = (cn*c2 - sn*s2) >> wp, (sn*c2 + cn*s2) >> wp t1 = (cnre*c2re - cnim*c2im - snre*s2re + snim*s2im) >> wp t2 = (cnre*c2im + cnim*c2re - snre*s2im - snim*s2re) >> wp t3 = (snre*c2re - snim*c2im + cnre*s2re - cnim*s2im) >> wp t4 = (snre*c2im + snim*c2re + cnre*s2im + cnim*s2re) >> wp cnre = t1 cnim = t2 snre = t3 snim = t4 sre = c1re + ((a * cnre) >> wp) sim = c1im + ((a * cnim) >> wp) while abs(a) > MIN: b = (b*x2) >> wp a = (a*b) >> wp t1 = (cnre*c2re - cnim*c2im - snre*s2re + snim*s2im) >> wp t2 = (cnre*c2im + cnim*c2re - snre*s2im - snim*s2re) >> wp t3 = (snre*c2re - snim*c2im + cnre*s2re - cnim*s2im) >> wp t4 = (snre*c2im + snim*c2re + cnre*s2im + cnim*s2re) >> wp cnre = t1 cnim = t2 snre = t3 snim = t4 sre += ((a * cnre) >> wp) sim += ((a * cnim) >> wp) sre = (sre << 1) sim = (sim << 1) sre = from_man_exp(sre, -wp, mp.prec, 'n') sim = from_man_exp(sim, -wp, mp.prec, 'n') s = mpc(sre, sim) # case z and q complex else: wp = mp.prec + extra2 xre, xim = q._mpc_ xre = to_fixed(xre, wp) xim = to_fixed(xim, wp) x2re = (xre*xre - xim*xim) >> wp x2im = (xre*xim) >> (wp - 1) are = bre = x2re aim = bim = x2im prec0 = mp.prec mp.prec = wp # cos(z), siz(z) with z complex c1 = cos(z) s1 = sin(z) mp.prec = prec0 cnre = c1re = to_fixed(c1.real._mpf_, wp) cnim = c1im = to_fixed(c1.imag._mpf_, wp) snre = s1re = to_fixed(s1.real._mpf_, wp) snim = s1im = to_fixed(s1.imag._mpf_, wp) c2re = (c1re*c1re - c1im*c1im - s1re*s1re + s1im*s1im) >> wp c2im = (c1re*c1im - s1re*s1im) >> (wp - 1) s2re = (c1re*s1re - c1im*s1im) >> (wp - 1) s2im = (c1re*s1im + c1im*s1re) >> (wp - 1) t1 = (cnre*c2re - cnim*c2im - snre*s2re + snim*s2im) >> wp t2 = (cnre*c2im + cnim*c2re - snre*s2im - snim*s2re) >> wp t3 = (snre*c2re - snim*c2im + cnre*s2re - cnim*s2im) >> wp t4 = (snre*c2im + snim*c2re + cnre*s2im + cnim*s2re) >> wp cnre = t1 cnim = t2 snre = t3 snim = t4 n = 1 termre = c1re termim = c1im sre = c1re + ((are * cnre - aim * cnim) >> wp) sim = c1im + ((are * cnim + aim * cnre) >> wp) n = 3 termre = ((are * cnre - aim * cnim) >> wp) termim = ((are * cnim + aim * cnre) >> wp) sre = c1re + ((are * cnre - aim * cnim) >> wp) sim = c1im + ((are * cnim + aim * cnre) >> wp) n = 5 while are**2 + aim**2 > MIN: bre, bim = (bre * x2re - bim * x2im) >> wp, \ (bre * x2im + bim * x2re) >> wp are, aim = (are * bre - aim * bim) >> wp, \ (are * bim + aim * bre) >> wp #cn, sn = (cn*c1 - sn*s1) >> wp, (sn*c1 + cn*s1) >> wp t1 = (cnre*c2re - cnim*c2im - snre*s2re + snim*s2im) >> wp t2 = (cnre*c2im + cnim*c2re - snre*s2im - snim*s2re) >> wp t3 = (snre*c2re - snim*c2im + cnre*s2re - cnim*s2im) >> wp t4 = (snre*c2im + snim*c2re + cnre*s2im + cnim*s2re) >> wp cnre = t1 cnim = t2 snre = t3 snim = t4 termre = ((are * cnre - aim * cnim) >> wp) termim = ((aim * cnre + are * cnim) >> wp) sre += ((are * cnre - aim * cnim) >> wp) sim += ((aim * cnre + are * cnim) >> wp) n += 2 sre = (sre << 1) sim = (sim << 1) sre = from_man_exp(sre, -wp, mp.prec, 'n') sim = from_man_exp(sim, -wp, mp.prec, 'n') s = mpc(sre, sim) s *= nthroot(q, 4) return s
def _djacobi_theta3(z, q, nd): """nd=1,2,3 order of the derivative with respect to z""" MIN = 2 extra1 = 10 extra2 = 20 if isinstance(q, mpf) and isinstance(z, mpf): s = MP_ZERO wp = mp.prec + extra1 x = to_fixed(q._mpf_, wp) a = b = x x2 = (x*x) >> wp c1, s1 = cos_sin(mpf_shift(z._mpf_, 1), wp) c1 = to_fixed(c1, wp) s1 = to_fixed(s1, wp) cn = c1 sn = s1 if (nd&1): s += (a * sn) >> wp else: s += (a * cn) >> wp n = 2 while abs(a) > MIN: b = (b*x2) >> wp a = (a*b) >> wp cn, sn = (cn*c1 - sn*s1) >> wp, (sn*c1 + cn*s1) >> wp if nd&1: s += (a * sn * n**nd) >> wp else: s += (a * cn * n**nd) >> wp n += 1 s = -(s << (nd+1)) s = mpf(from_man_exp(s, -wp, mp.prec, 'n')) # case z real, q complex elif isinstance(z, mpf): wp = mp.prec + extra2 xre, xim = q._mpc_ xre = to_fixed(xre, wp) xim = to_fixed(xim, wp) x2re = (xre*xre - xim*xim) >> wp x2im = (xre*xim) >> (wp - 1) are = bre = xre aim = bim = xim c1, s1 = cos_sin(mpf_shift(z._mpf_, 1), wp) c1 = to_fixed(c1, wp) s1 = to_fixed(s1, wp) cn = c1 sn = s1 if (nd&1): sre = (are * sn) >> wp sim = (aim * sn) >> wp else: sre = (are * cn) >> wp sim = (aim * cn) >> wp n = 2 while are**2 + aim**2 > MIN: bre, bim = (bre * x2re - bim * x2im) >> wp, \ (bre * x2im + bim * x2re) >> wp are, aim = (are * bre - aim * bim) >> wp, \ (are * bim + aim * bre) >> wp cn, sn = (cn*c1 - sn*s1) >> wp, (sn*c1 + cn*s1) >> wp if nd&1: sre += (are * sn * n**nd) >> wp sim += (aim * sn * n**nd) >> wp else: sre += (are * cn * n**nd) >> wp sim += (aim * cn * n**nd) >> wp n += 1 sre = -(sre << (nd+1)) sim = -(sim << (nd+1)) sre = from_man_exp(sre, -wp, mp.prec, 'n') sim = from_man_exp(sim, -wp, mp.prec, 'n') s = mpc(sre, sim) #case z complex, q real elif isinstance(q, mpf): wp = mp.prec + extra2 x = to_fixed(q._mpf_, wp) a = b = x x2 = (x*x) >> wp prec0 = mp.prec mp.prec = wp c1 = cos(2*z) s1 = sin(2*z) mp.prec = prec0 cnre = c1re = to_fixed(c1.real._mpf_, wp) cnim = c1im = to_fixed(c1.imag._mpf_, wp) snre = s1re = to_fixed(s1.real._mpf_, wp) snim = s1im = to_fixed(s1.imag._mpf_, wp) if (nd&1): sre = (a * snre) >> wp sim = (a * snim) >> wp else: sre = (a * cnre) >> wp sim = (a * cnim) >> wp n = 2 while abs(a) > MIN: b = (b*x2) >> wp a = (a*b) >> wp t1 = (cnre*c1re - cnim*c1im - snre*s1re + snim*s1im) >> wp t2 = (cnre*c1im + cnim*c1re - snre*s1im - snim*s1re) >> wp t3 = (snre*c1re - snim*c1im + cnre*s1re - cnim*s1im) >> wp t4 = (snre*c1im + snim*c1re + cnre*s1im + cnim*s1re) >> wp cnre = t1 cnim = t2 snre = t3 snim = t4 if (nd&1): sre += (a * snre * n**nd) >> wp sim += (a * snim * n**nd) >> wp else: sre += (a * cnre * n**nd) >> wp sim += (a * cnim * n**nd) >> wp n += 1 sre = -(sre << (nd+1)) sim = -(sim << (nd+1)) sre = from_man_exp(sre, -wp, mp.prec, 'n') sim = from_man_exp(sim, -wp, mp.prec, 'n') s = mpc(sre, sim) # case z and q complex else: wp = mp.prec + extra2 xre, xim = q._mpc_ xre = to_fixed(xre, wp) xim = to_fixed(xim, wp) x2re = (xre*xre - xim*xim) >> wp x2im = (xre*xim) >> (wp - 1) are = bre = xre aim = bim = xim prec0 = mp.prec mp.prec = wp # cos(2*z), sin(2*z) with z complex c1 = cos(2*z) s1 = sin(2*z) mp.prec = prec0 cnre = c1re = to_fixed(c1.real._mpf_, wp) cnim = c1im = to_fixed(c1.imag._mpf_, wp) snre = s1re = to_fixed(s1.real._mpf_, wp) snim = s1im = to_fixed(s1.imag._mpf_, wp) if (nd&1): sre = (are * snre - aim * snim) >> wp sim = (aim * snre + are * snim) >> wp else: sre = (are * cnre - aim * cnim) >> wp sim = (aim * cnre + are * cnim) >> wp n = 2 while are**2 + aim**2 > MIN: bre, bim = (bre * x2re - bim * x2im) >> wp, \ (bre * x2im + bim * x2re) >> wp are, aim = (are * bre - aim * bim) >> wp, \ (are * bim + aim * bre) >> wp t1 = (cnre*c1re - cnim*c1im - snre*s1re + snim*s1im) >> wp t2 = (cnre*c1im + cnim*c1re - snre*s1im - snim*s1re) >> wp t3 = (snre*c1re - snim*c1im + cnre*s1re - cnim*s1im) >> wp t4 = (snre*c1im + snim*c1re + cnre*s1im + cnim*s1re) >> wp cnre = t1 cnim = t2 snre = t3 snim = t4 if(nd&1): sre += ((are * snre - aim * snim) * n**nd) >> wp sim += ((aim * snre + are * snim) * n**nd) >> wp else: sre += ((are * cnre - aim * cnim) * n**nd) >> wp sim += ((aim * cnre + are * cnim) * n**nd) >> wp n += 1 sre = -(sre << (nd+1)) sim = -(sim << (nd+1)) sre = from_man_exp(sre, -wp, mp.prec, 'n') sim = from_man_exp(sim, -wp, mp.prec, 'n') s = mpc(sre, sim) if (nd&1): return (-1)**(nd//2) * s else: return (-1)**(1 + nd//2) * s
def _jacobi_theta3(z, q): extra1 = 10 extra2 = 20 MIN = 2 if z == zero: if isinstance(q, mpf): wp = mp.prec + extra1 x = to_fixed(q._mpf_, wp) s = x a = b = x x2 = (x*x) >> wp while abs(a) > MIN: b = (b*x2) >> wp a = (a*b) >> wp s += a s = (1 << wp) + (s << 1) s = mpf(from_man_exp(s, -wp, mp.prec, 'n')) return s else: wp = mp.prec + extra1 xre, xim = q._mpc_ xre = to_fixed(xre, wp) xim = to_fixed(xim, wp) x2re = (xre*xre - xim*xim) >> wp x2im = (xre*xim) >> (wp - 1) sre = are = bre = xre sim = aim = bim = xim while are**2 + aim**2 > MIN: bre, bim = (bre * x2re - bim * x2im) >> wp, \ (bre * x2im + bim * x2re) >> wp are, aim = (are * bre - aim * bim) >> wp, \ (are * bim + aim * bre) >> wp sre += are sim += aim sre = (1 << wp) + (sre << 1) sim = (sim << 1) sre = from_man_exp(sre, -wp, mp.prec, 'n') sim = from_man_exp(sim, -wp, mp.prec, 'n') s = mpc(sre, sim) return s else: if isinstance(q, mpf) and isinstance(z, mpf): s = MP_ZERO wp = mp.prec + extra1 x = to_fixed(q._mpf_, wp) a = b = x x2 = (x*x) >> wp c1, s1 = cos_sin(mpf_shift(z._mpf_, 1), wp) c1 = to_fixed(c1, wp) s1 = to_fixed(s1, wp) cn = c1 sn = s1 s += (a * cn) >> wp while abs(a) > MIN: b = (b*x2) >> wp a = (a*b) >> wp cn, sn = (cn*c1 - sn*s1) >> wp, (sn*c1 + cn*s1) >> wp s += (a * cn) >> wp s = (1 << wp) + (s << 1) s = mpf(from_man_exp(s, -wp, mp.prec, 'n')) return s # case z real, q complex elif isinstance(z, mpf): wp = mp.prec + extra2 xre, xim = q._mpc_ xre = to_fixed(xre, wp) xim = to_fixed(xim, wp) x2re = (xre*xre - xim*xim) >> wp x2im = (xre*xim) >> (wp - 1) are = bre = xre aim = bim = xim c1, s1 = cos_sin(mpf_shift(z._mpf_, 1), wp) c1 = to_fixed(c1, wp) s1 = to_fixed(s1, wp) cn = c1 sn = s1 sre = (are * cn) >> wp sim = (aim * cn) >> wp while are**2 + aim**2 > MIN: bre, bim = (bre * x2re - bim * x2im) >> wp, \ (bre * x2im + bim * x2re) >> wp are, aim = (are * bre - aim * bim) >> wp, \ (are * bim + aim * bre) >> wp cn, sn = (cn*c1 - sn*s1) >> wp, (sn*c1 + cn*s1) >> wp sre += (are * cn) >> wp sim += (aim * cn) >> wp sre = (1 << wp) + (sre << 1) sim = (sim << 1) sre = from_man_exp(sre, -wp, mp.prec, 'n') sim = from_man_exp(sim, -wp, mp.prec, 'n') s = mpc(sre, sim) return s #case z complex, q real elif isinstance(q, mpf): wp = mp.prec + extra2 x = to_fixed(q._mpf_, wp) a = b = x x2 = (x*x) >> wp prec0 = mp.prec mp.prec = wp c1 = cos(2*z) s1 = sin(2*z) mp.prec = prec0 cnre = c1re = to_fixed(c1.real._mpf_, wp) cnim = c1im = to_fixed(c1.imag._mpf_, wp) snre = s1re = to_fixed(s1.real._mpf_, wp) snim = s1im = to_fixed(s1.imag._mpf_, wp) sre = (a * cnre) >> wp sim = (a * cnim) >> wp while abs(a) > MIN: b = (b*x2) >> wp a = (a*b) >> wp t1 = (cnre*c1re - cnim*c1im - snre*s1re + snim*s1im) >> wp t2 = (cnre*c1im + cnim*c1re - snre*s1im - snim*s1re) >> wp t3 = (snre*c1re - snim*c1im + cnre*s1re - cnim*s1im) >> wp t4 = (snre*c1im + snim*c1re + cnre*s1im + cnim*s1re) >> wp cnre = t1 cnim = t2 snre = t3 snim = t4 sre += (a * cnre) >> wp sim += (a * cnim) >> wp sre = (1 << wp) + (sre << 1) sim = (sim << 1) sre = from_man_exp(sre, -wp, mp.prec, 'n') sim = from_man_exp(sim, -wp, mp.prec, 'n') s = mpc(sre, sim) return s # case z and q complex else: wp = mp.prec + extra2 xre, xim = q._mpc_ xre = to_fixed(xre, wp) xim = to_fixed(xim, wp) x2re = (xre*xre - xim*xim) >> wp x2im = (xre*xim) >> (wp - 1) are = bre = xre aim = bim = xim prec0 = mp.prec mp.prec = wp # cos(2*z), sin(2*z) with z complex c1 = cos(2*z) s1 = sin(2*z) mp.prec = prec0 cnre = c1re = to_fixed(c1.real._mpf_, wp) cnim = c1im = to_fixed(c1.imag._mpf_, wp) snre = s1re = to_fixed(s1.real._mpf_, wp) snim = s1im = to_fixed(s1.imag._mpf_, wp) sre = (are * cnre - aim * cnim) >> wp sim = (aim * cnre + are * cnim) >> wp while are**2 + aim**2 > MIN: bre, bim = (bre * x2re - bim * x2im) >> wp, \ (bre * x2im + bim * x2re) >> wp are, aim = (are * bre - aim * bim) >> wp, \ (are * bim + aim * bre) >> wp t1 = (cnre*c1re - cnim*c1im - snre*s1re + snim*s1im) >> wp t2 = (cnre*c1im + cnim*c1re - snre*s1im - snim*s1re) >> wp t3 = (snre*c1re - snim*c1im + cnre*s1re - cnim*s1im) >> wp t4 = (snre*c1im + snim*c1re + cnre*s1im + cnim*s1re) >> wp cnre = t1 cnim = t2 snre = t3 snim = t4 sre += (are * cnre - aim * cnim) >> wp sim += (aim * cnre + are * cnim) >> wp sre = (1 << wp) + (sre << 1) sim = (sim << 1) sre = from_man_exp(sre, -wp, mp.prec, 'n') sim = from_man_exp(sim, -wp, mp.prec, 'n') s = mpc(sre, sim) return s
def _djacobi_theta2(z, q, nd): MIN = 2 extra1 = 10 extra2 = 20 if isinstance(q, mpf) and isinstance(z, mpf): wp = mp.prec + extra1 x = to_fixed(q._mpf_, wp) x2 = (x*x) >> wp a = b = x2 c1, s1 = cos_sin(z._mpf_, wp) cn = c1 = to_fixed(c1, wp) sn = s1 = to_fixed(s1, wp) c2 = (c1*c1 - s1*s1) >> wp s2 = (c1 * s1) >> (wp - 1) cn, sn = (cn*c2 - sn*s2) >> wp, (sn*c2 + cn*s2) >> wp if (nd&1): s = s1 + ((a * sn * 3**nd) >> wp) else: s = c1 + ((a * cn * 3**nd) >> wp) n = 2 while abs(a) > MIN: b = (b*x2) >> wp a = (a*b) >> wp cn, sn = (cn*c2 - sn*s2) >> wp, (sn*c2 + cn*s2) >> wp if nd&1: s += (a * sn * (2*n+1)**nd) >> wp else: s += (a * cn * (2*n+1)**nd) >> wp n += 1 s = -(s << 1) s = mpf(from_man_exp(s, -wp, mp.prec, 'n')) # case z real, q complex elif isinstance(z, mpf): wp = mp.prec + extra2 xre, xim = q._mpc_ xre = to_fixed(xre, wp) xim = to_fixed(xim, wp) x2re = (xre*xre - xim*xim) >> wp x2im = (xre*xim) >> (wp - 1) are = bre = x2re aim = bim = x2im c1, s1 = cos_sin(z._mpf_, wp) cn = c1 = to_fixed(c1, wp) sn = s1 = to_fixed(s1, wp) c2 = (c1*c1 - s1*s1) >> wp s2 = (c1 * s1) >> (wp - 1) cn, sn = (cn*c2 - sn*s2) >> wp, (sn*c2 + cn*s2) >> wp if (nd&1): sre = s1 + ((are * sn * 3**nd) >> wp) sim = ((aim * sn * 3**nd) >> wp) else: sre = c1 + ((are * cn * 3**nd) >> wp) sim = ((aim * cn * 3**nd) >> wp) n = 5 while are**2 + aim**2 > MIN: bre, bim = (bre * x2re - bim * x2im) >> wp, \ (bre * x2im + bim * x2re) >> wp are, aim = (are * bre - aim * bim) >> wp, \ (are * bim + aim * bre) >> wp cn, sn = (cn*c2 - sn*s2) >> wp, (sn*c2 + cn*s2) >> wp if (nd&1): sre += ((are * sn * n**nd) >> wp) sim += ((aim * sn * n**nd) >> wp) else: sre += ((are * cn * n**nd) >> wp) sim += ((aim * cn * n**nd) >> wp) n += 2 sre = -(sre << 1) sim = -(sim << 1) sre = from_man_exp(sre, -wp, mp.prec, 'n') sim = from_man_exp(sim, -wp, mp.prec, 'n') s = mpc(sre, sim) #case z complex, q real elif isinstance(q, mpf): wp = mp.prec + extra2 x = to_fixed(q._mpf_, wp) x2 = (x*x) >> wp a = b = x2 prec0 = mp.prec mp.prec = wp c1 = cos(z) s1 = sin(z) mp.prec = prec0 cnre = c1re = to_fixed(c1.real._mpf_, wp) cnim = c1im = to_fixed(c1.imag._mpf_, wp) snre = s1re = to_fixed(s1.real._mpf_, wp) snim = s1im = to_fixed(s1.imag._mpf_, wp) #c2 = (c1*c1 - s1*s1) >> wp c2re = (c1re*c1re - c1im*c1im - s1re*s1re + s1im*s1im) >> wp c2im = (c1re*c1im - s1re*s1im) >> (wp - 1) #s2 = (c1 * s1) >> (wp - 1) s2re = (c1re*s1re - c1im*s1im) >> (wp - 1) s2im = (c1re*s1im + c1im*s1re) >> (wp - 1) #cn, sn = (cn*c2 - sn*s2) >> wp, (sn*c2 + cn*s2) >> wp t1 = (cnre*c2re - cnim*c2im - snre*s2re + snim*s2im) >> wp t2 = (cnre*c2im + cnim*c2re - snre*s2im - snim*s2re) >> wp t3 = (snre*c2re - snim*c2im + cnre*s2re - cnim*s2im) >> wp t4 = (snre*c2im + snim*c2re + cnre*s2im + cnim*s2re) >> wp cnre = t1 cnim = t2 snre = t3 snim = t4 if (nd&1): sre = s1re + ((a * snre * 3**nd) >> wp) sim = s1im + ((a * snim * 3**nd) >> wp) else: sre = c1re + ((a * cnre * 3**nd) >> wp) sim = c1im + ((a * cnim * 3**nd) >> wp) n = 5 while abs(a) > MIN: b = (b*x2) >> wp a = (a*b) >> wp t1 = (cnre*c2re - cnim*c2im - snre*s2re + snim*s2im) >> wp t2 = (cnre*c2im + cnim*c2re - snre*s2im - snim*s2re) >> wp t3 = (snre*c2re - snim*c2im + cnre*s2re - cnim*s2im) >> wp t4 = (snre*c2im + snim*c2re + cnre*s2im + cnim*s2re) >> wp cnre = t1 cnim = t2 snre = t3 snim = t4 if (nd&1): sre += ((a * snre * n**nd) >> wp) sim += ((a * snim * n**nd) >> wp) else: sre += ((a * cnre * n**nd) >> wp) sim += ((a * cnim * n**nd) >> wp) n += 2 sre = -(sre << 1) sim = -(sim << 1) sre = from_man_exp(sre, -wp, mp.prec, 'n') sim = from_man_exp(sim, -wp, mp.prec, 'n') s = mpc(sre, sim) # case z and q complex else: wp = mp.prec + extra2 xre, xim = q._mpc_ xre = to_fixed(xre, wp) xim = to_fixed(xim, wp) x2re = (xre*xre - xim*xim) >> wp x2im = (xre*xim) >> (wp - 1) are = bre = x2re aim = bim = x2im prec0 = mp.prec mp.prec = wp # cos(2*z), siz(2*z) with z complex c1 = cos(z) s1 = sin(z) mp.prec = prec0 cnre = c1re = to_fixed(c1.real._mpf_, wp) cnim = c1im = to_fixed(c1.imag._mpf_, wp) snre = s1re = to_fixed(s1.real._mpf_, wp) snim = s1im = to_fixed(s1.imag._mpf_, wp) c2re = (c1re*c1re - c1im*c1im - s1re*s1re + s1im*s1im) >> wp c2im = (c1re*c1im - s1re*s1im) >> (wp - 1) s2re = (c1re*s1re - c1im*s1im) >> (wp - 1) s2im = (c1re*s1im + c1im*s1re) >> (wp - 1) t1 = (cnre*c2re - cnim*c2im - snre*s2re + snim*s2im) >> wp t2 = (cnre*c2im + cnim*c2re - snre*s2im - snim*s2re) >> wp t3 = (snre*c2re - snim*c2im + cnre*s2re - cnim*s2im) >> wp t4 = (snre*c2im + snim*c2re + cnre*s2im + cnim*s2re) >> wp cnre = t1 cnim = t2 snre = t3 snim = t4 if (nd&1): sre = s1re + (((are * snre - aim * snim) * 3**nd) >> wp) sim = s1im + (((are * snim + aim * snre)* 3**nd) >> wp) else: sre = c1re + (((are * cnre - aim * cnim) * 3**nd) >> wp) sim = c1im + (((are * cnim + aim * cnre)* 3**nd) >> wp) n = 5 while are**2 + aim**2 > MIN: bre, bim = (bre * x2re - bim * x2im) >> wp, \ (bre * x2im + bim * x2re) >> wp are, aim = (are * bre - aim * bim) >> wp, \ (are * bim + aim * bre) >> wp #cn, sn = (cn*c1 - sn*s1) >> wp, (sn*c1 + cn*s1) >> wp t1 = (cnre*c2re - cnim*c2im - snre*s2re + snim*s2im) >> wp t2 = (cnre*c2im + cnim*c2re - snre*s2im - snim*s2re) >> wp t3 = (snre*c2re - snim*c2im + cnre*s2re - cnim*s2im) >> wp t4 = (snre*c2im + snim*c2re + cnre*s2im + cnim*s2re) >> wp cnre = t1 cnim = t2 snre = t3 snim = t4 if (nd&1): sre += (((are * snre - aim * snim) * n**nd) >> wp) sim += (((aim * snre + are * snim) * n**nd) >> wp) else: sre += (((are * cnre - aim * cnim) * n**nd) >> wp) sim += (((aim * cnre + are * cnim) * n**nd) >> wp) n += 2 sre = -(sre << 1) sim = -(sim << 1) sre = from_man_exp(sre, -wp, mp.prec, 'n') sim = from_man_exp(sim, -wp, mp.prec, 'n') s = mpc(sre, sim) s *= nthroot(q, 4) if (nd&1): return (-1)**(nd//2) * s else: return (-1)**(1 + nd//2) * s
Complex exponential function. We use the direct formula exp(a+bi) = exp(a) * (cos(b) + sin(b)*i) for the computation. This formula is very nice because it is pewrectly stable; since we just do real multiplications, the only numerical errors that can crewp in are single-ulp rnd errors. The formula is efficient since mpmath's real exp is quite fast and since we can compute cos and sin simultaneously. It is no problem if a and b are large; if the implementations of exp/cos/sin are accurate and efficient for all real numbers, then so is this function for all complex numbers. """ if a == fzero: return cos_sin(b, prec, rnd) mag = mpf_exp(a, prec+4, rnd) c, s = cos_sin(b, prec+4, rnd) re = mpf_mul(mag, c, prec, rnd) im = mpf_mul(mag, s, prec, rnd) return re, im def mpc_log(z, prec, rnd=round_fast): return mpf_log(mpc_abs(z, prec, rnd), prec, rnd), mpc_arg(z, prec, rnd) def mpc_cos((a, b), prec, rnd=round_fast): """Complex cosine. The formula used is cos(a+bi) = cos(a)*cosh(b) - sin(a)*sinh(b)*i. The same comments apply as for the complex exp: only real multiplications are pewrormed, so no cancellation errors are
Complex exponential function. We use the direct formula exp(a+bi) = exp(a) * (cos(b) + sin(b)*i) for the computation. This formula is very nice because it is pewrectly stable; since we just do real multiplications, the only numerical errors that can crewp in are single-ulp rnd errors. The formula is efficient since mpmath's real exp is quite fast and since we can compute cos and sin simultaneously. It is no problem if a and b are large; if the implementations of exp/cos/sin are accurate and efficient for all real numbers, then so is this function for all complex numbers. """ if a == fzero: return cos_sin(b, prec, rnd) mag = mpf_exp(a, prec + 4, rnd) c, s = cos_sin(b, prec + 4, rnd) re = mpf_mul(mag, c, prec, rnd) im = mpf_mul(mag, s, prec, rnd) return re, im def mpc_log(z, prec, rnd=round_fast): return mpf_log(mpc_abs(z, prec, rnd), prec, rnd), mpc_arg(z, prec, rnd) def mpc_cos((a, b), prec, rnd=round_fast): """Complex cosine. The formula used is cos(a+bi) = cos(a)*cosh(b) - sin(a)*sinh(b)*i.
def mpf_ci_si(x, prec, rnd=round_fast, which=2): """ Calculation of Ci(x), Si(x) for real x. which = 0 -- returns (Ci(x), -) which = 1 -- returns (Si(x), -) which = 2 -- returns (Ci(x), Si(x)) Note: if x < 0, Ci(x) needs an additional imaginary term, pi*i. """ wp = prec + 20 sign, man, exp, bc = x ci, si = None, None if not man: if x == fzero: return (fninf, fzero) if x == fnan: return (x, x) ci = fzero if which != 0: if x == finf: si = mpf_shift(mpf_pi(prec, rnd), -1) if x == fninf: si = mpf_neg(mpf_shift(mpf_pi(prec, negative_rnd[rnd]), -1)) return (ci, si) # For small x: Ci(x) ~ euler + log(x), Si(x) ~ x mag = exp + bc if mag < -wp: if which != 0: si = mpf_perturb(x, 1 - sign, prec, rnd) if which != 1: y = mpf_euler(wp) xabs = mpf_abs(x) ci = mpf_add(y, mpf_log(xabs, wp), prec, rnd) return ci, si # For huge x: Ci(x) ~ sin(x)/x, Si(x) ~ pi/2 elif mag > wp: if which != 0: if sign: si = mpf_neg(mpf_pi(prec, negative_rnd[rnd])) else: si = mpf_pi(prec, rnd) si = mpf_shift(si, -1) if which != 1: ci = mpf_div(mpf_sin(x, wp), x, prec, rnd) return ci, si else: wp += abs(mag) # Use an asymptotic series? The smallest value of n!/x^n # occurs for n ~ x, where the magnitude is ~ exp(-x). asymptotic = mag - 1 > math.log(wp, 2) # Case 1: convergent series near 0 if not asymptotic: if which != 0: si = mpf_pos(mpf_ci_si_taylor(x, wp, 1), prec, rnd) if which != 1: ci = mpf_ci_si_taylor(x, wp, 0) ci = mpf_add(ci, mpf_euler(wp), wp) ci = mpf_add(ci, mpf_log(mpf_abs(x), wp), prec, rnd) return ci, si x = mpf_abs(x) # Case 2: asymptotic series for x >> 1 xf = to_fixed(x, wp) xr = (MP_ONE << (2 * wp)) // xf # 1/x s1 = (MP_ONE << wp) s2 = xr t = xr k = 2 while t: t = -t t = (t * xr * k) >> wp k += 1 s1 += t t = (t * xr * k) >> wp k += 1 s2 += t s1 = from_man_exp(s1, -wp) s2 = from_man_exp(s2, -wp) s1 = mpf_div(s1, x, wp) s2 = mpf_div(s2, x, wp) cos, sin = cos_sin(x, wp) # Ci(x) = sin(x)*s1-cos(x)*s2 # Si(x) = pi/2-cos(x)*s1-sin(x)*s2 if which != 0: si = mpf_add(mpf_mul(cos, s1), mpf_mul(sin, s2), wp) si = mpf_sub(mpf_shift(mpf_pi(wp), -1), si, wp) if sign: si = mpf_neg(si) si = mpf_pos(si, prec, rnd) if which != 1: ci = mpf_sub(mpf_mul(sin, s1), mpf_mul(cos, s2), prec, rnd) return ci, si
def mpc_zeta(s, prec, rnd=round_fast, alt=0): re, im = s if im == fzero: return mpf_zeta(re, prec, rnd, alt), fzero wp = prec + 20 # Reflection formula. To be rigorous, we should reflect to the left of # re = 1/2 (see comments for mpf_zeta), but this leads to unnecessary # slowdown for interesting values of s if mpf_lt(re, fzero): # XXX: could use the separate refl. formula for Dirichlet eta if alt: q = mpc_sub(mpc_one, mpc_pow(mpc_two, mpc_sub(mpc_one, s, wp), wp), wp) return mpc_mul(mpc_zeta(s, wp), q, prec, rnd) # XXX: -1 should be done exactly y = mpc_sub(mpc_one, s, 10 * wp) a = mpc_gamma(y, wp) b = mpc_zeta(y, wp) c = mpc_sin_pi(mpc_shift(s, -1), wp) rsign, rman, rexp, rbc = re isign, iman, iexp, ibc = im mag = max(rexp + rbc, iexp + ibc) wp2 = wp + mag pi = mpf_pi(wp + wp2) pi2 = (mpf_shift(pi, 1), fzero) d = mpc_div_mpf(mpc_pow(pi2, s, wp2), pi, wp2) return mpc_mul(a, mpc_mul(b, mpc_mul(c, d, wp), wp), prec, rnd) n = int(wp / 2.54 + 5) n += int(0.9 * abs(to_int(im))) d = borwein_coefficients(n) ref = to_fixed(re, wp) imf = to_fixed(im, wp) tre = MP_ZERO tim = MP_ZERO one = MP_ONE << wp one_2wp = MP_ONE << (2 * wp) critical_line = re == fhalf for k in xrange(n): log = log_int_fixed(k + 1, wp) # A square root is much cheaper than an exp if critical_line: w = one_2wp // sqrt_fixed((k + 1) << wp, wp) else: w = to_fixed(mpf_exp(from_man_exp(-ref * log, -2 * wp), wp), wp) if k & 1: w *= (d[n] - d[k]) else: w *= (d[k] - d[n]) wre, wim = cos_sin( from_man_exp(-imf * log_int_fixed(k + 1, wp), -2 * wp), wp) tre += (w * to_fixed(wre, wp)) >> wp tim += (w * to_fixed(wim, wp)) >> wp tre //= (-d[n]) tim //= (-d[n]) tre = from_man_exp(tre, -wp, wp) tim = from_man_exp(tim, -wp, wp) if alt: return mpc_pos((tre, tim), prec, rnd) else: q = mpc_sub(mpc_one, mpc_pow(mpc_two, mpc_sub(mpc_one, s, wp), wp), wp) return mpc_div((tre, tim), q, prec, rnd)
def mpf_ci_si(x, prec, rnd=round_fast, which=2): """ Calculation of Ci(x), Si(x) for real x. which = 0 -- returns (Ci(x), -) which = 1 -- returns (Si(x), -) which = 2 -- returns (Ci(x), Si(x)) Note: if x < 0, Ci(x) needs an additional imaginary term, pi*i. """ wp = prec + 20 sign, man, exp, bc = x ci, si = None, None if not man: if x == fzero: return (fninf, fzero) if x == fnan: return (x, x) ci = fzero if which != 0: if x == finf: si = mpf_shift(mpf_pi(prec, rnd), -1) if x == fninf: si = mpf_neg(mpf_shift(mpf_pi(prec, negative_rnd[rnd]), -1)) return (ci, si) # For small x: Ci(x) ~ euler + log(x), Si(x) ~ x mag = exp+bc if mag < -wp: if which != 0: si = mpf_perturb(x, 1-sign, prec, rnd) if which != 1: y = mpf_euler(wp) xabs = mpf_abs(x) ci = mpf_add(y, mpf_log(xabs, wp), prec, rnd) return ci, si # For huge x: Ci(x) ~ sin(x)/x, Si(x) ~ pi/2 elif mag > wp: if which != 0: if sign: si = mpf_neg(mpf_pi(prec, negative_rnd[rnd])) else: si = mpf_pi(prec, rnd) si = mpf_shift(si, -1) if which != 1: ci = mpf_div(mpf_sin(x, wp), x, prec, rnd) return ci, si else: wp += abs(mag) # Use an asymptotic series? The smallest value of n!/x^n # occurs for n ~ x, where the magnitude is ~ exp(-x). asymptotic = mag-1 > math.log(wp, 2) # Case 1: convergent series near 0 if not asymptotic: if which != 0: si = mpf_pos(mpf_ci_si_taylor(x, wp, 1), prec, rnd) if which != 1: ci = mpf_ci_si_taylor(x, wp, 0) ci = mpf_add(ci, mpf_euler(wp), wp) ci = mpf_add(ci, mpf_log(mpf_abs(x), wp), prec, rnd) return ci, si x = mpf_abs(x) # Case 2: asymptotic series for x >> 1 xf = to_fixed(x, wp) xr = (MP_ONE<<(2*wp)) // xf # 1/x s1 = (MP_ONE << wp) s2 = xr t = xr k = 2 while t: t = -t t = (t*xr*k)>>wp k += 1 s1 += t t = (t*xr*k)>>wp k += 1 s2 += t s1 = from_man_exp(s1, -wp) s2 = from_man_exp(s2, -wp) s1 = mpf_div(s1, x, wp) s2 = mpf_div(s2, x, wp) cos, sin = cos_sin(x, wp) # Ci(x) = sin(x)*s1-cos(x)*s2 # Si(x) = pi/2-cos(x)*s1-sin(x)*s2 if which != 0: si = mpf_add(mpf_mul(cos, s1), mpf_mul(sin, s2), wp) si = mpf_sub(mpf_shift(mpf_pi(wp), -1), si, wp) if sign: si = mpf_neg(si) si = mpf_pos(si, prec, rnd) if which != 1: ci = mpf_sub(mpf_mul(sin, s1), mpf_mul(cos, s2), prec, rnd) return ci, si