Ejemplo n.º 1
0
def train_recognition(model_detector, model_encoder, model_classifier,
                      face_embeddings_path, verify):

    ensure_directory(config.INPUT_DIR_DATASET)

    print("")
    names = get_dataset_names(config.INPUT_DIR_DATASET)
    if names is not None:
        print("Names " + str(names))
        for name in names:
            for (_d, _n,
                 files) in os.walk(config.INPUT_DIR_DATASET + "/" + name):
                print(name + ": " + str(files))
    print("")

    ensure_directory(config.INPUT_DIR_MODEL_TRAINING)
    face_detector = FaceDetector(model=model_detector,
                                 path=config.INPUT_DIR_MODEL_DETECTION)
    face_encoder = FaceEncoder(model=model_encoder,
                               path=config.INPUT_DIR_MODEL_ENCODING,
                               path_training=config.INPUT_DIR_MODEL_TRAINING,
                               training=True)
    face_encoder.train(face_detector,
                       path_dataset=face_embeddings_path,
                       verify=verify,
                       classifier=model_classifier)
Ejemplo n.º 2
0
def process_facerecognition():

    cam_index = 0
    cam_resolution = RESOLUTION_QVGA
    model_detector = FaceDetectorModels.HAARCASCADE
    #    model_detector=FaceDetectorModels.DLIBHOG
    #    model_detector=FaceDetectorModels.DLIBCNN
    #    model_detector=FaceDetectorModels.SSDRESNET
    #    model_detector=FaceDetectorModels.MTCNN
    model_recognizer = FaceEncoderModels.LBPH
    #    model_recognizer=FaceEncoderModels.OPENFACE
    #    model_recognizer=FaceEncoderModels.DLIBRESNET

    # Initialize the camera
    camera = cam_init(cam_index, cam_resolution[0], cam_resolution[1])

    try:
        # Initialize face detection
        face_detector = FaceDetector(model=model_detector,
                                     path=INPUT_DIR_MODEL_DETECTION)
        # Initialize face recognizer
        face_encoder = FaceEncoder(model=model_recognizer,
                                   path=INPUT_DIR_MODEL_ENCODING,
                                   path_training=INPUT_DIR_MODEL_TRAINING,
                                   training=False)
    except:
        face_encoder = None
        print("Warning, check if models and trained dataset models exists!")
    face_id, confidence = (None, 0)

    while (True):

        # Capture frame from webcam
        ret, frame = camera.read()
        if frame is None:
            print("Error, check if camera is connected!")
            break

        # Detect and identify faces in the frame
        faces = face_detector.detect(frame)
        for (index, face) in enumerate(faces):
            (x, y, w, h) = face
            # Indentify face based on trained dataset (note: should run facial_recognition_training.py)
            if face_encoder is not None:
                face_id, confidence = face_encoder.identify(
                    frame, (x, y, w, h))
            # Set text and bounding box on face
            label_face(frame, (x, y, w, h), face_id, confidence)

        # Display updated frame to web app
        yield (b'--frame\r\nContent-Type: image/jpeg\r\n\r\n' +
               cv2.imencode('.jpg', frame)[1].tobytes() + b'\r\n\r\n')

    # Release the camera
    camera.release()
    cv2.destroyAllWindows()
def process_facerecognition(model_detector, model_recognizer, cam_index,
                            cam_resolution):

    # Initialize the camera
    camera = cam_init(cam_index, cam_resolution[0], cam_resolution[1])

    try:
        # Initialize face detection
        face_detector = FaceDetector(model=model_detector,
                                     path=INPUT_DIR_MODEL_DETECTION)

        # Initialize face recognizer
        face_encoder = FaceEncoder(model=model_recognizer,
                                   path=INPUT_DIR_MODEL_ENCODING,
                                   path_training=INPUT_DIR_MODEL_TRAINING,
                                   training=False)
    except:
        face_encoder = None
        print("Warning, check if models and trained dataset models exists!")
    face_id, confidence = (None, 0)

    while (True):

        # Capture frame from webcam
        ret, frame = camera.read()
        if frame is None:
            print("Error, check if camera is connected!")
            break

        # Detect and identify faces in the frame
        faces = face_detector.detect(frame)
        for (index, face) in enumerate(faces):
            (x, y, w, h) = face
            # Indentify face based on trained dataset (note: should run facial_recognition_training.py)
            if face_encoder is not None:
                face_id, confidence = face_encoder.identify(
                    frame, (x, y, w, h))
            # Set text and bounding box on face
            label_face(frame, (x, y, w, h), face_id, confidence)

            # Process 1 face only
            break

        # Display updated frame
        cv2.imshow(WINDOW_NAME, frame)

        # Check for user actions
        if cv2.waitKey(1) & 0xFF == 27:  # ESC
            break

    # Release the camera
    camera.release()
    cv2.destroyAllWindows()
def train_recognition(model_detector, model_encoder, model_classifier, verify):

    ensure_directory(INPUT_DIR_DATASET)
    ensure_directory(INPUT_DIR_MODEL_TRAINING)
    face_detector = FaceDetector(model=model_detector,
                                 path=INPUT_DIR_MODEL_DETECTION)
    face_encoder = FaceEncoder(model=model_encoder,
                               path=INPUT_DIR_MODEL_ENCODING,
                               path_training=INPUT_DIR_MODEL_TRAINING,
                               training=True)
    face_encoder.train(face_detector,
                       path_dataset=INPUT_DIR_DATASET,
                       verify=verify,
                       classifier=model_classifier)
Ejemplo n.º 5
0
def process_facerecognition(model_detector, model_recognizer, image):

    # Initialize the camera
    image = cv2.VideoCapture(image)

    # Initialize face detection
    face_detector = FaceDetector(model=model_detector,
                                 path=INPUT_DIR_MODEL_DETECTION)

    # Initialize face recognizer
    try:
        face_encoder = FaceEncoder(model=model_recognizer,
                                   path=INPUT_DIR_MODEL_ENCODING,
                                   path_training=INPUT_DIR_MODEL_TRAINING,
                                   training=False)
    except Exception as ex:
        face_encoder = None
        print("Warning, check if models and trained dataset models exists!")
        print(ex)
    face_id, confidence = (None, 0)

    # Capture frame-by-frame
    ret, frame = image.read()
    if ret == 0:
        print("Unexpected error! " + image)
        return
    # frame = cv2.imread(image)

    # Detect faces in the image
    faces = face_detector.detect(frame)
    for (index, face) in enumerate(faces):
        (x, y, w, h) = face
        # Indentify face based on trained dataset (note: should run facial_recognition_training.py)
        if face_encoder is not None:
            face_id, confidence = face_encoder.identify(frame, (x, y, w, h))
            print(face_id)
        # Set text and bounding box on face
        label_face(frame, (x, y, w, h), face_id, confidence)

    # Display the resulting frame
    cv2.imshow(WINDOW_NAME, frame)
    cv2.waitKey(1)

    # Release the image
    image.release()
    cv2.destroyAllWindows()
Ejemplo n.º 6
0
def init_model(int_detect=1, int_encode=3):
    # Only for debugging while developing
    try:
        # Initialize face detection
        global face_recognizer, face_detector, face_encoder
        face_detector = FaceDetector(model=FaceDetectorModels(int_detect),
                                     path=join(ROOT_DIR,
                                               INPUT_DIR_MODEL_DETECTION))
        # Initialize face recognizer
        face_encoder = FaceEncoder(model=FaceEncoderModels(int_encode),
                                   path=join(ROOT_DIR,
                                             INPUT_DIR_MODEL_ENCODING),
                                   path_training=join(
                                       ROOT_DIR, INPUT_DIR_MODEL_TRAINING),
                                   training=False)
        face_recognizer = FaceRecognizer(face_embeddings_path=join(
            ROOT_DIR, EMBEDDINGS_DIR + '/3_face_encodings_83.pickle'))
    except Exception as ex:
        face_encoder = None
        print(ex)
def process_livenessdetection(model_detector, model_recognizer, model_liveness,
                              cam_index, cam_resolution):

    # Initialize the camera
    camera = cam_init(cam_index, cam_resolution[0], cam_resolution[1])
    ##input
    check = int(
        input(
            "Enter number 1 if you want to show live video and vice versa: "))
    try:
        # Initialize face detection
        face_detector = FaceDetector(model=model_detector,
                                     path=INPUT_DIR_MODEL_DETECTION)

        # Initialize face recognizer
        face_encoder = FaceEncoder(model=model_recognizer,
                                   path=INPUT_DIR_MODEL_ENCODING,
                                   path_training=INPUT_DIR_MODEL_TRAINING,
                                   training=False)

        # Initialize face liveness detection
        face_liveness = FaceLiveness(
            model=FaceLivenessModels.EYESBLINK_MOUTHOPEN,
            path=INPUT_DIR_MODEL_LIVENESS)
        face_liveness2 = FaceLiveness(
            model=FaceLivenessModels.COLORSPACE_YCRCBLUV,
            path=INPUT_DIR_MODEL_LIVENESS)

    except:
        print("Error, check if models and trained dataset models exists!")
        return

    face_id, confidence = (None, 0)

    eyes_close, eyes_ratio = (False, 0)
    total_eye_blinks, eye_counter, eye_continuous_close = (
        0, 0, 1)  # eye_continuous_close should depend on frame rate
    mouth_open, mouth_ratio = (False, 0)
    total_mouth_opens, mouth_counter, mouth_continuous_open = (
        0, 0, 1)  # eye_continuous_close should depend on frame rate

    time_start = time()
    time_elapsed = 0
    frame_count = 0
    identified_unique_faces = {}  # dictionary
    runtime = 60  # monitor for 10 seconds only
    is_fake_count_print = 0
    is_fake_count_replay = 0
    face_count = 0
    ##edit
    time_recognition = 5
    checkface = False

    print("Note: this will run for {} seconds only".format(runtime))
    while (time_elapsed < runtime):

        # Capture frame from webcam
        ret, frame = camera.read()
        if frame is None:
            print("Error, check if camera is connected!")
            break

        # Detect and identify faces in the frame
        # Indentify face based on trained dataset (note: should run facial_recognition_training.py)
        faces = face_detector.detect(frame)
        for (index, face) in enumerate(faces):

            # Check if eyes are close and if mouth is open
            eyes_close, eyes_ratio = face_liveness.is_eyes_close(frame, face)
            mouth_open, mouth_ratio = face_liveness.is_mouth_open(frame, face)
            #print("eyes_close={}, eyes_ratio ={:.2f}".format(mouth_open, mouth_ratio))
            #print("mouth_open={}, mouth_ratio={:.2f}".format(mouth_open, mouth_ratio))

            # Detect if frame is a print attack or replay attack based on colorspace
            is_fake_print = face_liveness2.is_fake(frame, face)
            is_fake_replay = face_liveness2.is_fake(frame, face, flag=1)

            # Identify face only if it is not fake and eyes are open and mouth is close
            if is_fake_print:
                is_fake_count_print += 1
                face_id, confidence = ("Fake", None)
            elif is_fake_replay:
                is_fake_count_replay += 1
                face_id, confidence = ("Fake", None)
            elif not eyes_close and not mouth_open:
                face_id, confidence = face_encoder.identify(frame, face)
                if (face_id
                        not in identified_unique_faces) & (confidence > 50):
                    identified_unique_faces[face_id] = 1
                elif (face_id in identified_unique_faces) & (confidence > 50):
                    identified_unique_faces[face_id] += 1

            if (face_count > 100) | (face_id == "Fake"):
                face_count = 0
            elif (face_id != "Fake") & (confidence > 50):
                face_count += 1

            print("Identifying: {:.2f} %".format((face_count / 31) * 100))

            label_face(frame, face, face_id,
                       confidence)  # Set text and bounding box on face
            break  # Process 1 face only

        # Monitor eye blinking and mouth opening for liveness detection
        total_eye_blinks, eye_counter = monitor_eye_blinking(
            eyes_close, eyes_ratio, total_eye_blinks, eye_counter,
            eye_continuous_close)
        total_mouth_opens, mouth_counter = monitor_mouth_opening(
            mouth_open, mouth_ratio, total_mouth_opens, mouth_counter,
            mouth_continuous_open)

        # Update frame count
        frame_count += 1
        time_elapsed = time() - time_start

        # Display updated frame
        if check == 1:
            cv2.imshow(WINDOW_NAME, frame)

        # Check for user actions
        if cv2.waitKey(1) & 0xFF == 27:  # ESC
            break
        if face_count > 30:
            checkface = True
            break
        else:
            checkface = False

    print("Note: this will run for {} seconds only".format(runtime))

    # Determining if face is alive can depend on the following factors and more:
    time_elapsed = int(time() - time_start)
    print("\n")
    print("Face Liveness Data:")
    print("time_elapsed            = {}".format(time_elapsed)
          )  # recognition will run for specific time (ex. 3 seconds)
    print("frame_count             = {}".format(
        frame_count))  # can be used for averaging
    print("total_eye_blinks        = {}".format(
        total_eye_blinks))  # fake face if 0
    print("total_mouth_opens       = {}".format(
        total_mouth_opens))  # fake face if 0
    print("is_fake_count_print     = {}".format(
        is_fake_count_print))  # fake face if not 0
    print("is_fake_count_replay     = {}".format(
        is_fake_count_replay))  # fake face if not 0
    print("identified_unique_faces = {}".format(
        identified_unique_faces))  # fake face if recognized more than 1 face
    print("Todo: determine if face is alive using this data.")
    print("\n")
    if checkface == True:
        print("Hello {}!!!".format(
            max(identified_unique_faces, key=identified_unique_faces.get)))
    else:
        print("Can not indentify your face, please try again!")
    #print("{}".format(face_id))
    # Release the camera
    camera.release()
    cv2.destroyAllWindows()
Ejemplo n.º 8
0
def process_facerecognition(model_detector, model_recognizer,
                            model_speech_synthesizer, model_speech_recognizer,
                            cam_index, cam_resolution):

    # Initialize speech-to-text (speech recognizer) for voice-activated capability (wake-word/hot-word/trigger-word detection)
    # Then wait for trigger word before starting face recognition
    if True:
        speech_recognizer = SpeechRecognizer(model=model_speech_recognizer,
                                             path=None)
        print("\nWaiting for a trigger word: {}".format(TRIGGER_WORDS))
        speech_recognizer.start(TRIGGER_WORDS, speech_recognizer_callback)
        global trigger_word_detected
        try:
            while (trigger_word_detected == False):
                time.sleep(1)
        except:
            pass
        speech_recognizer.stop()
        speech_recognizer = None

    # Initialize the camera
    camera = cam_init(cam_index, cam_resolution[0], cam_resolution[1])

    try:
        # Initialize face detection
        face_detector = FaceDetector(model=model_detector,
                                     path=INPUT_DIR_MODEL_DETECTION)

        # Initialize face recognizer
        face_encoder = FaceEncoder(model=model_recognizer,
                                   path=INPUT_DIR_MODEL_ENCODING,
                                   path_training=INPUT_DIR_MODEL_TRAINING,
                                   training=False)

        # Initialize text-to-speech (speech synthesizer) for voice-enabled capability
        speech_synthesizer = SpeechSynthesizer(model=model_speech_synthesizer,
                                               path=None,
                                               path_output=None,
                                               training=False)

    except:
        face_encoder = None
        print("Warning, check if models and trained dataset models exists!")
    face_id, confidence = (None, 0)

    # Start face recognition
    frame_count = 0
    while (True):

        # Capture frame from webcam
        ret, frame = camera.read()
        if frame is None:
            print("Error, check if camera is connected!")
            break

        # Detect and identify faces in the frame
        faces = face_detector.detect(frame)
        for (index, face) in enumerate(faces):
            (x, y, w, h) = face
            # Indentify face based on trained dataset (note: should run facial_recognition_training.py)
            if face_encoder is not None:
                face_id, confidence = face_encoder.identify(
                    frame, (x, y, w, h))
            # Set text and bounding box on face
            label_face(frame, (x, y, w, h), face_id, confidence)

            # Play audio file corresponding to the recognized name
            if (frame_count % 30 == 0):
                if len(faces) == 1 and (face_id is not None) and (face_id !=
                                                                  "Unknown"):
                    speech_synthesizer.playaudio(INPUT_DIR_AUDIOSET,
                                                 face_id,
                                                 block=False)

            # Process 1 face only
            break

        # Display updated frame
        cv2.imshow(WINDOW_NAME, frame)

        # Check for user actions
        if cv2.waitKey(1) & 0xFF == 27:  # ESC
            break

        frame_count += 1

    # Release the camera
    camera.release()
    cv2.destroyAllWindows()
Ejemplo n.º 9
0
def process_facerecognition_livenessdetection_poseagegenderemotion(
        cam_resolution,
        out_resolution,
        framecount,
        image=None,
        model_detector=0,
        model_recognizer=0):

    from libfaceid.liveness import FaceLivenessDetectorModels, FaceLiveness
    from libfaceid.pose import FacePoseEstimatorModels, FacePoseEstimator
    from libfaceid.age import FaceAgeEstimatorModels, FaceAgeEstimator
    from libfaceid.gender import FaceGenderEstimatorModels, FaceGenderEstimator
    from libfaceid.emotion import FaceEmotionEstimatorModels, FaceEmotionEstimator
    model_poseestimator = FacePoseEstimatorModels.DEFAULT
    model_ageestimator = FaceAgeEstimatorModels.DEFAULT
    model_genderestimator = FaceGenderEstimatorModels.DEFAULT
    model_emotionestimator = FaceEmotionEstimatorModels.DEFAULT

    # Initialize the camera
    if image is not None:
        cap = cv2.VideoCapture(image)
    else:
        cap = cam_init(cam_resolution[0], cam_resolution[1])

    ###############################################################################
    # FACE DETECTION
    ###############################################################################
    # Initialize face detection
    face_detector = FaceDetector(
        model=model_detector,
        path=INPUT_DIR_MODEL_DETECTION)  #, optimize=True)

    ###############################################################################
    # FACE RECOGNITION
    ###############################################################################
    # Initialize face recognizer
    face_encoder = FaceEncoder(model=model_recognizer,
                               path=INPUT_DIR_MODEL_ENCODING,
                               path_training=INPUT_DIR_MODEL_TRAINING,
                               training=False)

    ###############################################################################
    # EYE BLINKING DETECTOR
    ###############################################################################
    # Initialize detector for blinking eyes
    face_liveness = FaceLiveness(model=FaceLivenessDetectorModels.EYEBLINKING,
                                 path=INPUT_DIR_MODEL_ESTIMATION)
    face_liveness.initialize()
    (eye_counter, total_eye_blinks) = (0, 0)

    ###############################################################################
    # FACE POSE/AGE/GENDER/EMOTION ESTIMATION
    ###############################################################################
    # Initialize pose/age/gender/emotion estimation
    if model_poseestimator is not None:
        face_pose_estimator = FacePoseEstimator(
            model=model_poseestimator, path=INPUT_DIR_MODEL_ESTIMATION)
    if model_ageestimator is not None:
        face_age_estimator = FaceAgeEstimator(model=model_ageestimator,
                                              path=INPUT_DIR_MODEL_ESTIMATION)
    if model_genderestimator is not None:
        face_gender_estimator = FaceGenderEstimator(
            model=model_genderestimator, path=INPUT_DIR_MODEL_ESTIMATION)
    if model_emotionestimator is not None:
        face_emotion_estimator = FaceEmotionEstimator(
            model=model_emotionestimator, path=INPUT_DIR_MODEL_ESTIMATION)
    (age, gender, emotion) = (None, None, None)

    # Initialize fps counter
    fps_frames = 0
    fps_start = time()
    fps = 0
    saveVideo = False
    out = None

    while (True):

        # Capture frame-by-frame
        ret, frame = cap.read()
        if ret == 0:
            print("Unexpected error! " + image)
            break

        ###############################################################################
        # FACE DETECTION and FACE RECOGNITION
        ###############################################################################
        # Detect and recognize each face in the images

        # Resize to QVGA so that RPI we can have acceptable fps
        if out_resolution is not None:
            #frame = imutils.resize(frame, width=out_resolution[0])
            (h, w) = image.shape[:2]
            frame = cv2.resize(
                frame,
                (out_resolution[0], int(h * out_resolution[0] / float(w))))

        ###############################################################################
        # FACE DETECTION
        ###############################################################################
        faces = face_detector.detect(frame)
        for (index, face) in enumerate(faces):
            (x, y, w, h) = face

            ###############################################################################
            # FACE AGE/GENDER/EMOTION ESTIMATION
            ###############################################################################
            face_image = frame[y:y + h, h:h + w]
            if model_ageestimator is not None:
                age = face_age_estimator.estimate(frame, face_image)
            if model_genderestimator is not None:
                gender = face_gender_estimator.estimate(frame, face_image)
            if model_emotionestimator is not None:
                emotion = face_emotion_estimator.estimate(frame, face_image)

            ###############################################################################
            # FACE RECOGNITION
            ###############################################################################
            face_id, confidence = face_encoder.identify(frame, (x, y, w, h))

            ###############################################################################
            # EYE BLINKING DETECTION
            ###############################################################################
            total_eye_blinks, eye_counter = face_liveness.detect(
                frame, (x, y, w, h), total_eye_blinks, eye_counter)

            ###############################################################################
            # FACE POSE ESTIMATION
            ###############################################################################
            # Detect and draw face pose locations
            if model_poseestimator is not None:
                shape = face_pose_estimator.detect(frame, face)
                face_pose_estimator.add_overlay(frame, shape)

            # Display name, age, gender, emotion
            cv2.putText(frame, "Age: {}".format(age), (20, 60),
                        cv2.FONT_HERSHEY_SIMPLEX, 0.5, (255, 255, 255), 1,
                        cv2.LINE_AA)
            cv2.putText(frame, "Gender: {}".format(gender), (20, 80),
                        cv2.FONT_HERSHEY_SIMPLEX, 0.5, (255, 255, 255), 1,
                        cv2.LINE_AA)
            cv2.putText(frame, "Emotion: {}".format(emotion), (20, 100),
                        cv2.FONT_HERSHEY_SIMPLEX, 0.5, (255, 255, 255), 1,
                        cv2.LINE_AA)
            cv2.putText(frame,
                        "Name: {} [{:.2f}%]".format(face_id, confidence),
                        (20, 120), cv2.FONT_HERSHEY_SIMPLEX, 0.5,
                        (255, 255, 255), 1, cv2.LINE_AA)

        ###############################################################################
        # EYE BLINKING DETECTION
        ###############################################################################
        cv2.putText(frame, "Blinks: {}".format(total_eye_blinks), (20, 40),
                    cv2.FONT_HERSHEY_SIMPLEX, 0.5, (255, 255, 255), 1,
                    cv2.LINE_AA)

        # Update frame count
        fps_frames += 1
        if (framecount != 0 and fps_frames >= framecount):
            break
        if (fps_frames % 30 == 29):
            fps = fps_frames / (time() - fps_start)
            fps_frames = 0
            fps_start = time()
        cv2.putText(frame, "FPS {:.2f}".format(fps), (20, 20),
                    cv2.FONT_HERSHEY_SIMPLEX, 0.5, (255, 255, 255), 1,
                    cv2.LINE_AA)

        # Save the frame to a video
        if saveVideo:
            out.write(frame)

        # Display the resulting frame
        cv2.imshow(WINDOW_NAME, frame)

        # Check for user actions
        keyPressed = cv2.waitKey(1) & 0xFF
        if keyPressed == 27:  # ESC
            break
        elif keyPressed == 32:  # Space
            saveVideo, out = save_video(saveVideo, out, frame.shape[:2],
                                        WINDOW_NAME + ".avi")
        elif keyPressed == 13:  # Enter
            save_photo(
                frame, WINDOW_NAME + "_" +
                datetime.datetime.now().strftime("%Y%m%d_%H%M%S") + ".jpg")

    # Set the fps
    time_diff = time() - fps_start
    if time_diff:
        fps = fps_frames / time_diff

    if image is not None:
        cv2.waitKey(3000)

    if saveVideo == True:
        out.release()

    # Release the camera
    cam_release(cap)

    return fps
def process_facerecognition():

    cam_index = 0
    #    cam_index = "http://192.168.0.105:8000/video"
    #    cam_index = int(args.webcam)

    cam_resolution = RESOLUTION_VGA
    #    model_detector=FaceDetectorModels.HAARCASCADE
    #    model_detector=FaceDetectorModels.DLIBHOG
    #    model_detector=FaceDetectorModels.DLIBCNN
    #    model_detector=FaceDetectorModels.SSDRESNET
    model_detector = FaceDetectorModels.MTCNN
    #    model_detector=FaceDetectorModels.FACENET

    #    model_recognizer=FaceEncoderModels.LBPH
    #    model_recognizer=FaceEncoderModels.OPENFACE
    #    model_recognizer=FaceEncoderModels.DLIBRESNET
    model_recognizer = FaceEncoderModels.FACENET

    # Initialize the camera
    camera = cam_init(cam_index, cam_resolution[0], cam_resolution[1])

    try:
        # Initialize face detection
        face_detector = FaceDetector(model=model_detector,
                                     path=INPUT_DIR_MODEL_DETECTION)
        # Initialize face recognizer
        face_encoder = FaceEncoder(model=model_recognizer,
                                   path=INPUT_DIR_MODEL_ENCODING,
                                   path_training=INPUT_DIR_MODEL_TRAINING,
                                   training=False)
    except:
        face_encoder = None
        print("Warning, check if models and trained dataset models exists!")
    face_id, confidence = (None, 0)
    df = pd.DataFrame(columns=['Employee'])

    while (True):

        # Capture frame from webcam
        ret, frame = camera.read()
        if frame is None:
            print("Error, check if camera is connected!")
            break

        # Detect and identify faces in the frame
        faces = face_detector.detect(frame)
        for (index, face) in enumerate(faces):
            (x, y, w, h) = face
            # Identify face based on trained dataset (note: should run facial_recognition_training.py)
            if face_encoder is not None:
                face_id, confidence = face_encoder.identify(
                    frame, (x, y, w, h))
            # Set text and bounding box on face
            label_face(frame, (x, y, w, h), face_id, confidence)

            # Process 1 face only
            #            break

            df = df.append({'Employee': face_id}, ignore_index=True)
            df1 = df.groupby('Employee').size()
            g = df1.values.tolist()
            #print(g)

        # Display updated frame to web app
        yield (b'--frame\r\nContent-Type: image/jpeg\r\n\r\n' +
               cv2.imencode('.jpg', frame)[1].tobytes() + b'\r\n\r\n')

    # Release the camera
    return g
    camera.release()
    cv2.destroyAllWindows()
Ejemplo n.º 11
0
def process_facerecognition(model_detector, model_recognizer,
                            model_speech_synthesizer, cam_index,
                            cam_resolution):

    # Initialize the camera
    camera = cam_init(cam_index, cam_resolution[0], cam_resolution[1])

    try:
        # Initialize face detection
        face_detector = FaceDetector(model=model_detector,
                                     path=INPUT_DIR_MODEL_DETECTION)

        # Initialize face recognizer
        face_encoder = FaceEncoder(model=model_recognizer,
                                   path=INPUT_DIR_MODEL_ENCODING,
                                   path_training=INPUT_DIR_MODEL_TRAINING,
                                   training=False)

        # Initialize text-to-speech synthesizer
        speech_synthesizer = SpeechSynthesizer(model=model_speech_synthesizer,
                                               path=None,
                                               path_output=None,
                                               training=False)
    except:
        #face_encoder = None
        print("Warning, check if models and trained dataset models exists!")
    face_id, confidence = (None, 0)

    frame_count = 0
    while (True):

        # Capture frame from webcam
        ret, frame = camera.read()
        if frame is None:
            print("Error, check if camera is connected!")
            break

        # Detect and identify faces in the frame
        faces = face_detector.detect(frame)
        for (index, face) in enumerate(faces):
            (x, y, w, h) = face
            # Indentify face based on trained dataset (note: should run facial_recognition_training.py)
            if face_encoder is not None:
                face_id, confidence = face_encoder.identify(
                    frame, (x, y, w, h))
            # Set text and bounding box on face
            label_face(frame, (x, y, w, h), face_id, confidence)

            # Play audio file corresponding to the recognized name
            if (frame_count % 30 == 0):
                if len(faces) == 1 and (face_id is not None) and (face_id !=
                                                                  "Unknown"):
                    speech_synthesizer.playaudio(INPUT_DIR_AUDIOSET,
                                                 face_id,
                                                 block=False)

            # Process 1 face only
            break

        # Display updated frame
        cv2.imshow(WINDOW_NAME, frame)

        # Check for user actions
        if cv2.waitKey(1) & 0xFF == 27:  # ESC
            break

        frame_count += 1

    # Release the camera
    camera.release()
    cv2.destroyAllWindows()
Ejemplo n.º 12
0
def login():
    windowname = "Result"
    INPUT_DIR_DATASET = "datasets"
    INPUT_DIR_MODEL_DETECTION = "models/detection/"
    INPUT_DIR_MODEL_ENCODING = "models/encoding/"
    INPUT_DIR_MODEL_TRAINING = "models/training/"
    INPUT_DIR_MODEL_ESTIMATION = "models/estimation/"
    INPUT_DIR_MODEL_LIVENESS = "models/liveness/"

    # Set width and height
    RESOLUTION_QVGA = (320, 240)

    #cap = cv2.VideoCapture(0)
    # cam_index = 0
    cam_resolution = RESOLUTION_QVGA
    # detector = FaceDetectorModels.HAARCASCADE
    #    detector=FaceDetectorModels.DLIBHOG
    #    detector=FaceDetectorModels.DLIBCNN
    #    detector=FaceDetectorModels.SSDRESNET
    #    detector=FaceDetectorModels.MTCNN
    detector = FaceDetectorModels.FACENET

    # encoder = FaceEncoderModels.LBPH
    #    encoder=FaceEncoderModels.OPENFACE
    #    encoder=FaceEncoderModels.DLIBRESNET
    encoder = FaceEncoderModels.FACENET

    liveness = FaceLivenessModels.EYESBLINK_MOUTHOPEN
    # liveness=FaceLivenessModels.COLORSPACE_YCRCBLUV

    # Initialize the camera
    #camera = cam_init(cam_resolution[0], cam_resolution[1])

    try:
        # Initialize face detection
        face_detector = FaceDetector(model=detector,
                                     path=INPUT_DIR_MODEL_DETECTION)

        # Initialize face recognizer
        face_encoder = FaceEncoder(model=encoder,
                                   path=INPUT_DIR_MODEL_ENCODING,
                                   path_training=INPUT_DIR_MODEL_TRAINING,
                                   training=False)

        # Initialize face liveness detection
        face_liveness = FaceLiveness(model=liveness,
                                     path=INPUT_DIR_MODEL_LIVENESS)
        face_liveness2 = FaceLiveness(
            model=FaceLivenessModels.COLORSPACE_YCRCBLUV,
            path=INPUT_DIR_MODEL_LIVENESS)

    except:
        print("Error, check if models and trained dataset models exists!")
        return

    face_id, confidence = (None, 0)

    eyes_close, eyes_ratio = (False, 0)
    total_eye_blinks, eye_counter, eye_continuous_close = (
        0, 0, 1)  # eye_continuous_close should depend on frame rate
    mouth_open, mouth_ratio = (False, 0)
    total_mouth_opens, mouth_counter, mouth_continuous_open = (
        0, 0, 1)  # eye_continuous_close should depend on frame rate

    time_start = time()
    time_elapsed = 0
    frame_count = 0
    identified_unique_faces = {}  # dictionary
    runtime = 10  # monitor for 10 seconds only
    is_fake_count_print = 0
    # print("Note: this will run for {} seconds only".format(runtime))
    while (True):
        # Capture frame from webcam
        if flask.request.method == "POST":
            # image = request.get("image")
            # read the image in PIL format
            image = request.files["image"]
            print("image :", type(image))
            npimg = np.fromfile(image, np.uint8)
            print("npimg :", type(npimg))
            file = cv2.imdecode(npimg, cv2.IMREAD_COLOR)
            print("file :", type(file))
            # pil_image = Image.open(image)
            #img = np.array(Image.open(io.BytesIO(image)))
            # save the image on server side
            # cv2.imwrite('saved_image/new.jpg', cv2.cvtColor(img, cv2.COLOR_RGB2BGR))

            frame = file
            if frame is None:
                print("Error, check if camera is connected!")
                break

        # Detect and identify faces in the frame
        # Indentify face based on trained dataset (note: should run facial_recognition_training.py)
            faces = face_detector.detect(frame)
            for (index, face) in enumerate(faces):

                # Check if eyes are close and if mouth is open
                eyes_close, eyes_ratio = face_liveness.is_eyes_close(
                    frame, face)
                mouth_open, mouth_ratio = face_liveness.is_mouth_open(
                    frame, face)
                print("eyes_close={}, eyes_ratio ={:.2f}".format(
                    mouth_open, mouth_ratio))
                print("mouth_open={}, mouth_ratio={:.2f}".format(
                    mouth_open, mouth_ratio))
                # print("confidence: " , confidence)

                # Detect if frame is a print attack or replay attack based on colorspace
                is_fake_print = face_liveness2.is_fake(frame, face)
                # is_fake_replay = face_liveness2.is_fake(frame, face, flag=1)

                # Identify face only if it is not fake and eyes are open and mouth is close
                if is_fake_print:
                    is_fake_count_print += 1
                    face_id, confidence = ("Fake", None)
                elif not eyes_close and not mouth_open:
                    face_id, confidence = face_encoder.identify(frame, face)
                    if face_id not in identified_unique_faces:
                        identified_unique_faces[face_id] = 1
                    else:
                        identified_unique_faces[face_id] += 1

                label_face(frame, face, face_id,
                           confidence)  # Set text and bounding box on face
                #cv2.imshow(windowname,frame)
                #cv2.waitKey(1)
                conf = confidence
                id = face_id
                print("confidence :", confidence)
                print("faceid :", face_id)
                '''if face_id in identified_unique_faces:
                    return render_template('success.html')
                else:
                    return render_template('result_F.html')'''
                '''POST_USERNAME = str(request.form['name'])
                if POST_USERNAME==id:
                    return render_template('success.html')
                else:
                    return render_template('result_F.html')'''
                #yield (b'--frame\r\nContent-Type: image/jpeg\r\n\r\n' + cv2.imencode('.jpg', frame)[1].tobytes() + b'\r\n\r\n')

        # Monitor eye blinking and mouth opening for liveness detection
        total_eye_blinks, eye_counter = monitor_eye_blinking(
            eyes_close, eyes_ratio, total_eye_blinks, eye_counter,
            eye_continuous_close)
        total_mouth_opens, mouth_counter = monitor_mouth_opening(
            mouth_open, mouth_ratio, total_mouth_opens, mouth_counter,
            mouth_continuous_open)

        # Update frame count
        frame_count += 1
Ejemplo n.º 13
0
def process_facerecognition(model_detector, model_recognizer, redis_cam, cam_resolution, embeddings_path, image_folder):
    # Initialize the camera
    # camera = cam_init(redis_cam, cam_resolution[0], cam_resolution[1])
    
    if redis_cam == None:
        print("cannot connect to redis streaming...")
        return
    try:
        # Initialize face detection
        face_detector = FaceDetector(model=model_detector, path=INPUT_DIR_MODEL_DETECTION)
        # face_detector_fn = FaceDetector(model=FaceDetectorModels(5), path=INPUT_DIR_MODEL_DETECTION)
        # Initialize face recognizer
        face_encoder = FaceEncoder(model=model_recognizer, path=INPUT_DIR_MODEL_ENCODING, path_training=INPUT_DIR_MODEL_TRAINING, training=False)
        face_recognizer = FaceRecognizer(face_embeddings_path = embeddings_path)
    except Exception as ex:
        face_encoder = None
        print("Warning, check if models and trained dataset models exists!")
    face_id, confidence = (None, 0)

    if image_folder != '':
        output_dir = './predict_results'
        if not os.path.exists(output_dir):
            os.makedirs(output_dir)
        lst_image = glob.glob(image_folder+'/*')
        for img_path in lst_image:
            try:
                if img_path:
                    image = cv2.VideoCapture(img_path)
                    ret, frame = image.read()        
                if frame is None:
                    print("Error, check if camera is connected!")
                    continue

                frame, _, _ = face_recognizer.recognize(frame, face_detector, face_encoder,num_times_recognize=1, check_type = 'face_distance')

                cv2.imwrite(join(output_dir, basename(img_path)), frame)
            except Exception as ex:
                print(ex)    

    else:
        # input as webcam
        while (True):
            # Capture frame from webcam
            img_path = None
            # img_path = "/home/500/anh_lbt/IMAGE_TASK/FaceRecognition_2019/faceidsys/datasets/test/me2.jpg"
            img_path = "/home/500/anh_lbt/IMAGE_TASK/test/test.jpg"
            if img_path:
                image = cv2.VideoCapture(img_path)
                ret, frame = image.read()
            else:  
                key = '{0}|uint8_{1}_{2}_3'.format((redis_cam.store_name), \
                    redis_cam.y1 - redis_cam.y0, redis_cam.x1 - redis_cam.x0)
                frame = redis_cam.decoding_image(key)
            
            if frame is None:
                print("Error, check if camera is connected!")
                break

            # TEST === Detect and identify faces in the frame
            # faces = face_detector.detect(frame)
            # label_face(frame, faces[0], None)
            # plt.imshow(frame)
            # plt.show()
            # embs = face_encoder.encode(frame, faces, -1)
            frame, _, _ = face_recognizer.recognize(frame, face_detector, face_encoder, check_type = 'face_distance')

            # Display updated frame
            frame = imutils.resize(frame, 1800)
            cv2.imshow(WINDOW_NAME, frame)

            # Check for user actions
            if cv2.waitKey(1) & 0xFF == 27: # ESC
                break

        # Release the camera
        # camera.release()
        cv2.destroyAllWindows()
    while (True):
        # Capture frame from webcam
        # ret, frame = camera.read()
        key = '{0}|uint8_{1}_{2}_3'.format((redis_cam.store_name), \
            redis_cam.y1 - redis_cam.y0, redis_cam.x1 - redis_cam.x0)
        frame = redis_cam.decoding_image(key)
        
        if frame is None:
            print("Error, check if camera is connected!")
            break
        # Detect and identify faces in the frame
        faces = face_detector.detect(frame)
        for (index, face) in enumerate(faces):
            (x, y, w, h) = face
            # Indentify face based on trained dataset (note: should run facial_recognition_training.py)
            if face_encoder is not None:
                face_id, confidence = face_encoder.identify(frame, (x, y, w, h))
            # Set text and bounding box on face
            label_face(frame, (x, y, w, h), face_id, confidence)
            # Process 1 face only
            break
        # Display updated frame
        cv2.imshow(WINDOW_NAME, frame)

        # Check for user actions
        if cv2.waitKey(1) & 0xFF == 27: # ESC
            break

    # Release the camera
    camera.release()
    cv2.destroyAllWindows()
def login():
    INPUT_DIR_DATASET = "datasets"
    INPUT_DIR_MODEL_DETECTION = "models/detection/"
    INPUT_DIR_MODEL_ENCODING = "models/encoding/"
    INPUT_DIR_MODEL_TRAINING = "models/training/"
    INPUT_DIR_MODEL_ESTIMATION = "models/estimation/"
    INPUT_DIR_MODEL_LIVENESS = "models/liveness/"

    # Set width and height
    RESOLUTION_QVGA = (320, 240)

    cap = cv2.VideoCapture(0)
    # cam_index = 0
    cam_resolution = RESOLUTION_QVGA
    # detector = FaceDetectorModels.HAARCASCADE
    #    detector=FaceDetectorModels.DLIBHOG
    #    detector=FaceDetectorModels.DLIBCNN
    #    detector=FaceDetectorModels.SSDRESNET
    #    detector=FaceDetectorModels.MTCNN
    detector = FaceDetectorModels.FACENET

    # encoder = FaceEncoderModels.LBPH
    #    encoder=FaceEncoderModels.OPENFACE
    #    encoder=FaceEncoderModels.DLIBRESNET
    encoder = FaceEncoderModels.FACENET

    liveness = FaceLivenessModels.EYESBLINK_MOUTHOPEN
    # liveness=FaceLivenessModels.COLORSPACE_YCRCBLUV

    # Initialize the camera
    #camera = cam_init(cam_resolution[0], cam_resolution[1])

    try:
        # Initialize face detection
        face_detector = FaceDetector(model=detector,
                                     path=INPUT_DIR_MODEL_DETECTION)

        # Initialize face recognizer
        face_encoder = FaceEncoder(model=encoder,
                                   path=INPUT_DIR_MODEL_ENCODING,
                                   path_training=INPUT_DIR_MODEL_TRAINING,
                                   training=False)

        # Initialize face liveness detection
        face_liveness = FaceLiveness(model=liveness,
                                     path=INPUT_DIR_MODEL_LIVENESS)
        face_liveness2 = FaceLiveness(
            model=FaceLivenessModels.COLORSPACE_YCRCBLUV,
            path=INPUT_DIR_MODEL_LIVENESS)

    except:
        print("Error, check if models and trained dataset models exists!")
        return

    face_id, confidence = (None, 0)

    eyes_close, eyes_ratio = (False, 0)
    total_eye_blinks, eye_counter, eye_continuous_close = (
        0, 0, 1)  # eye_continuous_close should depend on frame rate
    mouth_open, mouth_ratio = (False, 0)
    total_mouth_opens, mouth_counter, mouth_continuous_open = (
        0, 0, 1)  # eye_continuous_close should depend on frame rate

    time_start = time()
    time_elapsed = 0
    frame_count = 0
    identified_unique_faces = {}  # dictionary
    runtime = 10  # monitor for 10 seconds only
    is_fake_count_print = 0
    # print("Note: this will run for {} seconds only".format(runtime))
    while (True):
        # Capture frame from webcam
        ret, frame = cap.read()
        if frame is None:
            print("Error, check if camera is connected!")
            break

        # Detect and identify faces in the frame
        # Indentify face based on trained dataset (note: should run facial_recognition_training.py)
        faces = face_detector.detect(frame)
        for (index, face) in enumerate(faces):

            # Check if eyes are close and if mouth is open
            eyes_close, eyes_ratio = face_liveness.is_eyes_close(frame, face)
            mouth_open, mouth_ratio = face_liveness.is_mouth_open(frame, face)
            print("eyes_close={}, eyes_ratio ={:.2f}".format(
                mouth_open, mouth_ratio))
            print("mouth_open={}, mouth_ratio={:.2f}".format(
                mouth_open, mouth_ratio))
            # print("confidence: " , confidence)

            # Detect if frame is a print attack or replay attack based on colorspace
            is_fake_print = face_liveness2.is_fake(frame, face)
            # is_fake_replay = face_liveness2.is_fake(frame, face, flag=1)

            # Identify face only if it is not fake and eyes are open and mouth is close
            if is_fake_print:
                is_fake_count_print += 1
                face_id, confidence = ("Fake", None)
            elif not eyes_close and not mouth_open:
                face_id, confidence = face_encoder.identify(frame, face)
                if face_id not in identified_unique_faces:
                    identified_unique_faces[face_id] = 1
                else:
                    identified_unique_faces[face_id] += 1

            label_face(frame, face, face_id,
                       confidence)  # Set text and bounding box on face
            conf = confidence
            print("confidence :", confidence)
            print("faceid :", face_id)
            if conf >= 90:
                #return 'Recognized'
                return render_template('success.html')
            else:
                #return 'Not recognized'
                return render_template('dashboard.html')

        #yield (b'--frame\r\nContent-Type: image/jpeg\r\n\r\n' + cv2.imencode('.jpg', frame)[1].tobytes() + b'\r\n\r\n')

        # Monitor eye blinking and mouth opening for liveness detection
        total_eye_blinks, eye_counter = monitor_eye_blinking(
            eyes_close, eyes_ratio, total_eye_blinks, eye_counter,
            eye_continuous_close)
        total_mouth_opens, mouth_counter = monitor_mouth_opening(
            mouth_open, mouth_ratio, total_mouth_opens, mouth_counter,
            mouth_continuous_open)
        # Update frame count
        frame_count += 1
        # Release the camera
    cap.release()
    cv2.destroyAllWindows()
Ejemplo n.º 15
0
def process_livenessdetection():

    cam_index = 0
    cam_resolution = RESOLUTION_QVGA
    #    model_detector=FaceDetectorModels.HAARCASCADE
    model_detector = FaceDetectorModels.DLIBHOG
    #    model_detector=FaceDetectorModels.DLIBCNN
    #    model_detector=FaceDetectorModels.SSDRESNET
    #    model_detector=FaceDetectorModels.MTCNN
    #    model_detector=FaceDetectorModels.FACENET

    #    model_recognizer=FaceEncoderModels.LBPH
    #    model_recognizer=FaceEncoderModels.OPENFACE
    model_recognizer = FaceEncoderModels.DLIBRESNET
    #    model_recognizer=FaceEncoderModels.FACENET
    #liveness=FaceLivenessModels.EYESBLINK_MOUTHOPEN
    liveness = FaceLivenessModels.COLORSPACE_YCRCBLUV

    # Initialize the camera
    camera = cam_init(cam_index, cam_resolution[0], cam_resolution[1])
    check = int(
        input(
            "Enter number 1 if you want to show live video and vice versa: "))
    try:
        # Initialize face detection
        face_detector = FaceDetector(model=model_detector,
                                     path=INPUT_DIR_MODEL_DETECTION)
        # Initialize face recognizer
        face_encoder = FaceEncoder(model=model_recognizer,
                                   path=INPUT_DIR_MODEL_ENCODING,
                                   path_training=INPUT_DIR_MODEL_TRAINING,
                                   training=False)
        # Initialize face liveness detection
        face_liveness = FaceLiveness(
            model=FaceLivenessModels.EYESBLINK_MOUTHOPEN,
            path=INPUT_DIR_MODEL_LIVENESS)
        face_liveness2 = FaceLiveness(
            model=FaceLivenessModels.COLORSPACE_YCRCBLUV,
            path=INPUT_DIR_MODEL_LIVENESS)

    except:
        #face_encoder = None
        print("Warning, check if models and trained dataset models exists!")
        return
    face_id, confidence = (None, 0)

    ##edit
    eyes_close, eyes_ratio = (False, 0)
    total_eye_blinks, eye_counter, eye_continuous_close = (
        0, 0, 1)  # eye_continuous_close should depend on frame rate
    mouth_open, mouth_ratio = (False, 0)
    total_mouth_opens, mouth_counter, mouth_continuous_open = (
        0, 0, 1)  # eye_continuous_close should depend on frame rate

    time_start = time()
    time_elapsed = 0
    frame_count = 0
    identified_unique_faces = {}  # dictionary
    runtime = 1000  # monitor for 10 seconds only
    is_fake_count_print = 0
    is_fake_count_replay = 0
    face_count = 0
    ##edit
    time_recognition = 5
    checkface = False

    print("Note: this will run for {} seconds only".format(runtime))

    while (time_elapsed < runtime):

        # Capture frame from webcam
        ret, frame = camera.read()
        if frame is None:
            print("Error, check if camera is connected!")
            break

        ## Detect and identify faces in the frame
        #faces = face_detector.detect(frame)
        #for (index, face) in enumerate(faces):
        #(x, y, w, h) = face
        ## Indentify face based on trained dataset (note: should run facial_recognition_training.py)
        #if face_encoder is not None:
        #face_id, confidence = face_encoder.identify(frame, (x, y, w, h))
        ## Set text and bounding box on face
        #label_face(frame, (x, y, w, h), face_id, confidence)

        # Process 1 face only
        #break
        # Detect and identify faces in the frame
        # Indentify face based on trained dataset (note: should run facial_recognition_training.py)
        faces = face_detector.detect(frame)
        for (index, face) in enumerate(faces):

            # Check if eyes are close and if mouth is open
            eyes_close, eyes_ratio = face_liveness.is_eyes_close(frame, face)
            mouth_open, mouth_ratio = face_liveness.is_mouth_open(frame, face)
            #print("eyes_close={}, eyes_ratio ={:.2f}".format(mouth_open, mouth_ratio))
            #print("mouth_open={}, mouth_ratio={:.2f}".format(mouth_open, mouth_ratio))

            # Detect if frame is a print attack or replay attack based on colorspace
            is_fake_print = face_liveness2.is_fake(frame, face)
            is_fake_replay = face_liveness2.is_fake(frame, face, flag=1)

            # Identify face only if it is not fake and eyes are open and mouth is close
            if is_fake_print:
                is_fake_count_print += 1
                face_id, confidence = ("Fake", None)
            elif is_fake_replay:
                is_fake_count_replay += 1
                face_id, confidence = ("Fake", None)
            elif not eyes_close and not mouth_open:
                face_id, confidence = face_encoder.identify(frame, face)
                if (face_id
                        not in identified_unique_faces) & (confidence > 50):
                    identified_unique_faces[face_id] = 1
                elif (face_id in identified_unique_faces) & (confidence > 50):
                    identified_unique_faces[face_id] += 1

            if (face_count > 100) | (face_id == "Fake"):
                face_count = 0
            elif (face_id != "Fake") & (confidence > 50):
                face_count += 1

            print("Identifying: {:.2f} %".format((face_count / 100) * 100))

            label_face(frame, face, face_id,
                       confidence)  # Set text and bounding box on face
            break  # Process 1 face only

        # Monitor eye blinking and mouth opening for liveness detection
        total_eye_blinks, eye_counter = monitor_eye_blinking(
            eyes_close, eyes_ratio, total_eye_blinks, eye_counter,
            eye_continuous_close)
        total_mouth_opens, mouth_counter = monitor_mouth_opening(
            mouth_open, mouth_ratio, total_mouth_opens, mouth_counter,
            mouth_continuous_open)

        # Update frame count
        frame_count += 1
        time_elapsed = time() - time_start

        #cv2.imshow(WINDOW_NAME, frame)
        if face_count > 99:
            checkface = True
            break
        else:
            checkface = False

        # Display updated frame to web app
        if check == 1:
            yield (b'--frame\r\nContent-Type: image/jpeg\r\n\r\n' +
                   cv2.imencode('.jpg', frame)[1].tobytes() + b'\r\n\r\n')
    if checkface == True:
        print("Hello {}!!!".format(
            max(identified_unique_faces, key=identified_unique_faces.get)))
    else:
        print("Can not indentify your face, please try again!")
    # Release the camera
    camera.release()
    cv2.destroyAllWindows()
Ejemplo n.º 16
0
def process_facerecognition(cam_resolution,
                            out_resolution,
                            framecount,
                            image=None,
                            model_detector=0,
                            model_recognizer=0):

    # Initialize the camera
    if image is not None:
        cap = cv2.VideoCapture(image)
    else:
        cap = cam_init(cam_resolution[0], cam_resolution[1])

    ###############################################################################
    # FACE DETECTION
    ###############################################################################
    # Initialize face detection
    face_detector = FaceDetector(model=model_detector,
                                 path=INPUT_DIR_MODEL_DETECTION,
                                 optimize=True)

    ###############################################################################
    # FACE RECOGNITION
    ###############################################################################
    # Initialize face recognizer
    face_encoder = FaceEncoder(model=model_recognizer,
                               path=INPUT_DIR_MODEL_ENCODING,
                               path_training=INPUT_DIR_MODEL_TRAINING,
                               training=False)
    face_id, confidence = ("Unknown", 0)

    # Initialize fps counter
    fps_frames = 0
    fps_start = time()
    fps = 0
    saveVideo = False
    out = None

    # Optimization
    skip_frames = True
    skip_frames_count = 0
    skip_frames_set = 2

    while (True):

        # Capture frame-by-frame
        ret, frame = cap.read()
        if ret == 0:
            print("Unexpected error! " + image)
            break

        ###############################################################################
        # FACE DETECTION and FACE RECOGNITION
        ###############################################################################
        # Detect and recognize each face in the images

        # Resize to QVGA so that RPI we can have acceptable fps
        if out_resolution is not None:
            #frame = imutils.resize(frame, width=out_resolution[0])
            (h, w) = image.shape[:2]
            frame = cv2.resize(
                frame,
                (out_resolution[0], int(h * out_resolution[0] / float(w))))

        ###############################################################################
        # FACE DETECTION
        ###############################################################################
        faces = face_detector.detect(frame)
        for (index, face) in enumerate(faces):
            (x, y, w, h) = face

            ###############################################################################
            # FACE RECOGNITION
            ###############################################################################
            face_id, confidence = face_encoder.identify(frame, (x, y, w, h))

            # Set bounding box and text
            label_face(frame, (x, y, w, h), face_id, confidence)

        # Update frame count
        fps_frames += 1
        if (framecount != 0 and fps_frames >= framecount):
            break
        if (fps_frames % 30 == 29):
            fps = fps_frames / (time() - fps_start)
            fps_frames = 0
            fps_start = time()
        cv2.putText(frame, "FPS {:.2f}".format(fps), (20, 20),
                    cv2.FONT_HERSHEY_SIMPLEX, 0.5, (255, 255, 255), 1,
                    cv2.LINE_AA)

        # Save the frame to a video
        if saveVideo:
            out.write(frame)

        # Display the resulting frame
        cv2.imshow(WINDOW_NAME, frame)

        # Check for user actions
        keyPressed = cv2.waitKey(1) & 0xFF
        if keyPressed == 27:  # ESC
            break
        elif keyPressed == 32:  # Space
            saveVideo, out = save_video(saveVideo, out, frame.shape[:2],
                                        "facial_recognition_rpi3.avi")

    # Set the fps
    time_diff = time() - fps_start
    if time_diff:
        fps = fps_frames / time_diff

    if image is not None:
        cv2.waitKey(3000)

    if saveVideo == True:
        out.release()

    # Release the camera
    cam_release(cap)

    return fps
Ejemplo n.º 17
0
def cumucount():
    input_video = "tiv.mp4"
    #	input_video = "http://*****:*****@192.168.0.105:80/1"

    # By default I use an "SSD with Mobilenet" model here. See the detection model zoo (https://github.com/tensorflow/models/blob/master/research/object_detection/g3doc/detection_model_zoo.md) for a list of other models that can be run out-of-the-box with varying speeds and accuracies.
    detection_graph, category_index = backbone.set_model(
        'ssd_mobilenet_v1_coco_2017_11_17')

    targeted_objects = "person"
    fps = 24  # change it with your input video fps
    width = 640  # change it with your input video width
    height = 480  # change it with your input vide height
    is_color_recognition_enabled = 0  # set it to 1 for enabling the color prediction for the detected objects
    roi = 200  # roi line position
    deviation = 5  # the constant that represents the object counting area
    total_passed_vehicle = 0
    fourcc = cv2.VideoWriter_fourcc(*'XVID')
    output_movie = cv2.VideoWriter('the_output.avi', fourcc, fps,
                                   (width, height))
    # input video
    cap = cv2.VideoCapture(input_video)
    cam_resolution = RESOLUTION_VGA
    model_detector = FaceDetectorModels.HAARCASCADE
    model_recognizer = FaceEncoderModels.LBPH
    try:
        # Initialize face detection
        face_detector = FaceDetector(model=model_detector,
                                     path=INPUT_DIR_MODEL_DETECTION)
        # Initialize face recognizer
        face_encoder = FaceEncoder(model=model_recognizer,
                                   path=INPUT_DIR_MODEL_ENCODING,
                                   path_training=INPUT_DIR_MODEL_TRAINING,
                                   training=False)
    except:
        face_encoder = None
        print("Warning, check if models and trained dataset models exists!")
    face_id, confidence = (None, 0)
    total_passed_vehicle = 0
    counting_mode = "..."
    width_heigh_taken = True
    with detection_graph.as_default():
        with tf.Session(graph=detection_graph) as sess:
            # Definite input and output Tensors for detection_graph
            image_tensor = detection_graph.get_tensor_by_name('image_tensor:0')
            # Each box represents a part of the image where a particular object was detected.
            detection_boxes = detection_graph.get_tensor_by_name(
                'detection_boxes:0')
            # Each score represent how level of confidence for each of the objects.
            # Score is shown on the result image, together with the class label.
            detection_scores = detection_graph.get_tensor_by_name(
                'detection_scores:0')
            detection_classes = detection_graph.get_tensor_by_name(
                'detection_classes:0')
            num_detections = detection_graph.get_tensor_by_name(
                'num_detections:0')

            # for all the frames that are extracted from input video
            while (cap.isOpened()):
                ret, frame = cap.read()

                if not ret:
                    print("end of the video file...")
                    break
                input_frame = frame
                # Detect and identify faces in the frame
                faces = face_detector.detect(input_frame)
                for (index, face) in enumerate(faces):
                    (x, y, w, h) = face
                    # Identify face based on trained dataset (note: should run facial_recognition_training.py)
                    if face_encoder is not None:
                        face_id, confidence = face_encoder.identify(
                            input_frame, (x, y, w, h))
                    # Set text and bounding box on face
                    label_face(input_frame, (x, y, w, h), face_id, confidence)
                    # Process 1 face only
                    #break
                    # Expand dimensions since the model expects images to have shape: [1, None, None, 3]
                image_np_expanded = np.expand_dims(input_frame, axis=0)
                # Actual detection
                (boxes, scores, classes,
                 num) = sess.run([
                     detection_boxes, detection_scores, detection_classes,
                     num_detections
                 ],
                                 feed_dict={image_tensor: image_np_expanded})
                # insert information text to video frame
                font = cv2.FONT_HERSHEY_SIMPLEX

                # Visualization of the results of a detection.
                counter, csv_line, counting_mode = vis_util.visualize_boxes_and_labels_on_image_array_y_axis(
                    cap.get(1),
                    input_frame,
                    2,
                    is_color_recognition_enabled,
                    np.squeeze(boxes),
                    np.squeeze(classes).astype(np.int32),
                    np.squeeze(scores),
                    category_index,
                    targeted_objects="person",
                    y_reference=roi,
                    deviation=deviation,
                    use_normalized_coordinates=True,
                    line_thickness=4)
                # when the vehicle passed over line and counted, make the color of ROI line green
                if counter == 1:
                    cv2.line(input_frame, (0, roi), (width, roi), (0, 0xFF, 0),
                             5)
                else:
                    cv2.line(input_frame, (0, roi), (width, roi), (0, 0, 0xFF),
                             5)

                total_passed_vehicle = total_passed_vehicle + counter
                # insert information text to video frame
                font = cv2.FONT_HERSHEY_SIMPLEX
                cv2.putText(
                    input_frame,
                    'Detected: ' + str(total_passed_vehicle),
                    (10, 35),
                    font,
                    0.8,
                    (0, 0xFF, 0xFF),
                    2,
                    cv2.FONT_HERSHEY_SIMPLEX,
                )
                cv2.putText(
                    input_frame,
                    'ROI Line',
                    (545, roi - 10),
                    font,
                    0.6,
                    (0, 0, 0xFF),
                    2,
                    cv2.LINE_AA,
                )
                output_movie.write(input_frame)
                #print ("writing frame")
                #cv2.imshow('object counting',input_frame)
                #if cv2.waitKey(1) & 0xFF == ord('q'):
                #break
                # Display updated frame to web app
                yield (b'--frame\r\nContent-Type: image/jpeg\r\n\r\n' +
                       cv2.imencode('.jpg', frame)[1].tobytes() + b'\r\n\r\n')
            cap.release()
            cv2.destroyAllWindows()